dane z plików - nie chodzi
This commit is contained in:
344
app.py
344
app.py
@ -3,6 +3,8 @@ import logging
|
||||
import asyncio
|
||||
import os
|
||||
import json
|
||||
import csv
|
||||
import re
|
||||
from flask import Flask, render_template, request
|
||||
from flask_socketio import SocketIO
|
||||
from binance import Client
|
||||
@ -13,6 +15,8 @@ from datetime import datetime, timedelta
|
||||
# --- Configuration ---
|
||||
SYMBOL = 'ETHUSDT'
|
||||
HISTORY_FILE = 'historical_data_1m.json'
|
||||
DATA_FOLDER = 'data'
|
||||
USER_PREFERENCES_FILE = 'user_preferences.json'
|
||||
RESTART_TIMEOUT_S = 15
|
||||
BINANCE_WS_URL = f"wss://stream.binance.com:9443/ws/{SYMBOL.lower()}@trade"
|
||||
|
||||
@ -28,54 +32,276 @@ socketio = SocketIO(app, async_mode='threading')
|
||||
app_initialized = False
|
||||
app_init_lock = Lock()
|
||||
current_bar = {} # To track the currently forming 1-minute candle
|
||||
selected_csv_file = None # Currently selected CSV file
|
||||
csv_file_lock = Lock() # Lock for CSV file operations
|
||||
|
||||
# --- Utility Functions ---
|
||||
def get_available_csv_files():
|
||||
"""Get list of available CSV files with their start dates."""
|
||||
csv_files = []
|
||||
if not os.path.exists(DATA_FOLDER):
|
||||
os.makedirs(DATA_FOLDER)
|
||||
return csv_files
|
||||
|
||||
for filename in os.listdir(DATA_FOLDER):
|
||||
if filename.endswith('.csv') and SYMBOL in filename:
|
||||
# Extract date from filename like ETHUSDT_20250101.csv
|
||||
match = re.search(r'(\d{8})', filename)
|
||||
if match:
|
||||
date_str = match.group(1)
|
||||
try:
|
||||
start_date = datetime.strptime(date_str, '%Y%m%d')
|
||||
file_path = os.path.join(DATA_FOLDER, filename)
|
||||
file_size = os.path.getsize(file_path)
|
||||
csv_files.append({
|
||||
'filename': filename,
|
||||
'start_date_str': start_date.strftime('%Y-%m-%d'),
|
||||
'date_str': date_str,
|
||||
'size': file_size,
|
||||
'display_name': f"{start_date.strftime('%Y-%m-%d')} ({filename})"
|
||||
})
|
||||
logging.info(f"Found CSV file: {filename}, size: {file_size}, date: {date_str}")
|
||||
except ValueError:
|
||||
logging.warning(f"Could not parse date from filename: {filename}")
|
||||
continue
|
||||
|
||||
# Sort by start date (newest first)
|
||||
csv_files.sort(key=lambda x: x['date_str'], reverse=True)
|
||||
logging.info(f"Available CSV files: {[f['filename'] for f in csv_files]}")
|
||||
return csv_files
|
||||
|
||||
def get_default_csv_file():
|
||||
"""Get the default CSV file (smallest one or last used)."""
|
||||
# Try to load last used file
|
||||
if os.path.exists(USER_PREFERENCES_FILE):
|
||||
try:
|
||||
with open(USER_PREFERENCES_FILE, 'r') as f:
|
||||
prefs = json.load(f)
|
||||
last_file = prefs.get('last_csv_file')
|
||||
if last_file and os.path.exists(os.path.join(DATA_FOLDER, last_file)):
|
||||
logging.info(f"Using last selected file: {last_file}")
|
||||
return last_file
|
||||
except:
|
||||
pass
|
||||
|
||||
# Fall back to smallest file
|
||||
csv_files = get_available_csv_files()
|
||||
if csv_files:
|
||||
# Filter to exclude the large Binance file for better performance
|
||||
filtered_files = [f for f in csv_files if not f['filename'].endswith('_Binance.csv')]
|
||||
if filtered_files:
|
||||
smallest_file = min(filtered_files, key=lambda x: x['size'])
|
||||
logging.info(f"Using smallest filtered file: {smallest_file['filename']} ({smallest_file['size']} bytes)")
|
||||
else:
|
||||
smallest_file = min(csv_files, key=lambda x: x['size'])
|
||||
logging.info(f"Using smallest file: {smallest_file['filename']} ({smallest_file['size']} bytes)")
|
||||
return smallest_file['filename']
|
||||
|
||||
logging.warning("No CSV files found")
|
||||
return None
|
||||
|
||||
def save_user_preference(csv_filename):
|
||||
"""Save the user's CSV file preference."""
|
||||
prefs = {}
|
||||
if os.path.exists(USER_PREFERENCES_FILE):
|
||||
try:
|
||||
with open(USER_PREFERENCES_FILE, 'r') as f:
|
||||
prefs = json.load(f)
|
||||
except:
|
||||
pass
|
||||
|
||||
prefs['last_csv_file'] = csv_filename
|
||||
with open(USER_PREFERENCES_FILE, 'w') as f:
|
||||
json.dump(prefs, f)
|
||||
|
||||
def read_csv_data(csv_filename):
|
||||
"""Read historical data from CSV file."""
|
||||
csv_path = os.path.join(DATA_FOLDER, csv_filename)
|
||||
if not os.path.exists(csv_path):
|
||||
return []
|
||||
|
||||
klines = []
|
||||
try:
|
||||
with open(csv_path, 'r', newline='', encoding='utf-8') as csvfile:
|
||||
reader = csv.DictReader(csvfile)
|
||||
for row in reader:
|
||||
# Convert CSV row to kline format
|
||||
open_time = datetime.strptime(row['Open time'], '%Y-%m-%d %H:%M:%S')
|
||||
close_time = datetime.strptime(row['Close time'].split('.')[0], '%Y-%m-%d %H:%M:%S')
|
||||
|
||||
# =================================================================
|
||||
# --- FIX START: Convert string values to numeric types ---
|
||||
# The original code passed the string values from the CSV directly.
|
||||
# This caused the historical data to be misinterpreted by the chart.
|
||||
# By converting to float/int here, we ensure data consistency.
|
||||
# =================================================================
|
||||
kline = [
|
||||
int(open_time.timestamp() * 1000), # Open time (ms)
|
||||
float(row['Open']), # Open
|
||||
float(row['High']), # High
|
||||
float(row['Low']), # Low
|
||||
float(row['Close']), # Close
|
||||
float(row['Volume']), # Volume
|
||||
int(close_time.timestamp() * 1000), # Close time (ms)
|
||||
float(row['Quote asset volume']), # Quote asset volume
|
||||
int(row['Number of trades']), # Number of trades
|
||||
float(row['Taker buy base asset volume']), # Taker buy base asset volume
|
||||
float(row['Taker buy quote asset volume']), # Taker buy quote asset volume
|
||||
float(row['Ignore']) # Ignore
|
||||
]
|
||||
# --- FIX END ---
|
||||
# =================================================================
|
||||
klines.append(kline)
|
||||
except Exception as e:
|
||||
logging.error(f"Error reading CSV file {csv_filename}: {e}")
|
||||
return []
|
||||
|
||||
return klines
|
||||
|
||||
def append_to_csv(csv_filename, candle_data):
|
||||
"""Append new candle data to CSV file."""
|
||||
csv_path = os.path.join(DATA_FOLDER, csv_filename)
|
||||
|
||||
try:
|
||||
with csv_file_lock:
|
||||
# Convert candle data to CSV row
|
||||
open_time = datetime.fromtimestamp(candle_data['time'])
|
||||
close_time = open_time.replace(second=59, microsecond=999000)
|
||||
|
||||
row = [
|
||||
open_time.strftime('%Y-%m-%d %H:%M:%S'),
|
||||
candle_data['open'],
|
||||
candle_data['high'],
|
||||
candle_data['low'],
|
||||
candle_data['close'],
|
||||
0.0, # Volume (placeholder)
|
||||
close_time.strftime('%Y-%m-%d %H:%M:%S.%f')[:-3],
|
||||
0.0, # Quote asset volume (placeholder)
|
||||
1, # Number of trades (placeholder)
|
||||
0.0, # Taker buy base asset volume (placeholder)
|
||||
0.0, # Taker buy quote asset volume (placeholder)
|
||||
0.0 # Ignore
|
||||
]
|
||||
|
||||
# Check if file exists and has header
|
||||
file_exists = os.path.exists(csv_path)
|
||||
|
||||
with open(csv_path, 'a', newline='', encoding='utf-8') as csvfile:
|
||||
writer = csv.writer(csvfile)
|
||||
|
||||
# Write header if file is new
|
||||
if not file_exists:
|
||||
headers = [
|
||||
'Open time', 'Open', 'High', 'Low', 'Close', 'Volume',
|
||||
'Close time', 'Quote asset volume', 'Number of trades',
|
||||
'Taker buy base asset volume', 'Taker buy quote asset volume', 'Ignore'
|
||||
]
|
||||
writer.writerow(headers)
|
||||
|
||||
writer.writerow(row)
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error appending to CSV file {csv_filename}: {e}")
|
||||
|
||||
def fill_missing_data(csv_filename):
|
||||
"""Fill missing data by downloading from Binance."""
|
||||
global selected_csv_file
|
||||
|
||||
try:
|
||||
logging.info(f"Checking for missing data in {csv_filename}")
|
||||
|
||||
# Get the start date from filename
|
||||
match = re.search(r'(\d{8})', csv_filename)
|
||||
if not match:
|
||||
return
|
||||
|
||||
date_str = match.group(1)
|
||||
start_date = datetime.strptime(date_str, '%Y%m%d')
|
||||
|
||||
# Read existing data
|
||||
existing_data = read_csv_data(csv_filename)
|
||||
|
||||
# Determine what data we need to fetch
|
||||
if existing_data:
|
||||
# Get the last timestamp from existing data
|
||||
last_timestamp = existing_data[-1][0] // 1000 # Convert to seconds
|
||||
fetch_start = datetime.fromtimestamp(last_timestamp) + timedelta(minutes=1)
|
||||
else:
|
||||
fetch_start = start_date
|
||||
|
||||
# Fetch missing data up to current time
|
||||
now = datetime.now()
|
||||
if fetch_start >= now:
|
||||
logging.info(f"No missing data for {csv_filename}")
|
||||
return existing_data
|
||||
|
||||
logging.info(f"Fetching missing data from {fetch_start} to {now}")
|
||||
|
||||
client = Client()
|
||||
missing_klines = client.get_historical_klines(
|
||||
SYMBOL,
|
||||
Client.KLINE_INTERVAL_1MINUTE,
|
||||
start_str=fetch_start.strftime('%Y-%m-%d %H:%M:%S'),
|
||||
end_str=now.strftime('%Y-%m-%d %H:%M:%S')
|
||||
)
|
||||
|
||||
if missing_klines:
|
||||
# Append missing data to CSV
|
||||
csv_path = os.path.join(DATA_FOLDER, csv_filename)
|
||||
with csv_file_lock:
|
||||
with open(csv_path, 'a', newline='', encoding='utf-8') as csvfile:
|
||||
writer = csv.writer(csvfile)
|
||||
|
||||
for kline in missing_klines:
|
||||
open_time = datetime.fromtimestamp(kline[0] / 1000)
|
||||
close_time = datetime.fromtimestamp(kline[6] / 1000)
|
||||
|
||||
row = [
|
||||
open_time.strftime('%Y-%m-%d %H:%M:%S'),
|
||||
kline[1], kline[2], kline[3], kline[4], kline[5],
|
||||
close_time.strftime('%Y-%m-%d %H:%M:%S.%f')[:-3],
|
||||
kline[7], kline[8], kline[9], kline[10], kline[11]
|
||||
]
|
||||
writer.writerow(row)
|
||||
|
||||
logging.info(f"Added {len(missing_klines)} missing candles to {csv_filename}")
|
||||
existing_data.extend(missing_klines)
|
||||
|
||||
return existing_data
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error filling missing data for {csv_filename}: {e}")
|
||||
return existing_data if 'existing_data' in locals() else []
|
||||
|
||||
# --- Historical Data Streaming ---
|
||||
def stream_historical_data(sid):
|
||||
"""
|
||||
Fetches the last week of historical 1-minute kline data from Binance,
|
||||
saves it to a file, and sends it to the connected client.
|
||||
Loads historical data from the selected CSV file and sends it to the client.
|
||||
"""
|
||||
global selected_csv_file
|
||||
|
||||
try:
|
||||
logging.info(f"Starting historical data stream for SID={sid}")
|
||||
client = Client()
|
||||
|
||||
# --- NEW SOLUTION: Load data for the last week ---
|
||||
logging.info(f"Fetching historical data for the last 7 days for SID={sid}")
|
||||
# The `python-binance` library allows using relative date strings.
|
||||
# This single call is more efficient for this use case.
|
||||
all_klines = client.get_historical_klines(
|
||||
SYMBOL,
|
||||
Client.KLINE_INTERVAL_1MINUTE,
|
||||
start_str="8 weeks ago UTC" # Fetches data starting from 8 weeks ago until now
|
||||
)
|
||||
# Get selected CSV file or default
|
||||
if not selected_csv_file:
|
||||
selected_csv_file = get_default_csv_file()
|
||||
|
||||
# --- ORIGINAL SOLUTION COMMENTED OUT ---
|
||||
# num_chunks = 6
|
||||
# chunk_size_days = 15
|
||||
# end_date = datetime.utcnow()
|
||||
# all_klines = []
|
||||
#
|
||||
# for i in range(num_chunks):
|
||||
# start_date = end_date - timedelta(days=chunk_size_days)
|
||||
# logging.info(f"Fetching chunk {i + 1}/{num_chunks} for SID={sid}")
|
||||
# new_klines = client.get_historical_klines(SYMBOL, Client.KLINE_INTERVAL_1MINUTE, str(start_date), str(end_date))
|
||||
# if new_klines:
|
||||
# all_klines.extend(new_klines)
|
||||
# # The progress emission is no longer needed for a single API call
|
||||
# # socketio.emit('history_progress', {'progress': ((i + 1) / num_chunks) * 100}, to=sid)
|
||||
# end_date = start_date
|
||||
# socketio.sleep(0.05)
|
||||
# --- END OF ORIGINAL SOLUTION ---
|
||||
|
||||
# The rest of the function processes the `all_klines` data as before
|
||||
seen = set()
|
||||
unique_klines = [kline for kline in sorted(all_klines, key=lambda x: x[0]) if tuple(kline) not in seen and not seen.add(tuple(kline))]
|
||||
if not selected_csv_file:
|
||||
# No CSV files available, create a default one
|
||||
logging.warning("No CSV files available, creating default file")
|
||||
selected_csv_file = f"ETHUSDT_{datetime.now().strftime('%Y%m%d')}.csv"
|
||||
|
||||
logging.info(f"Using CSV file: {selected_csv_file}")
|
||||
|
||||
with open(HISTORY_FILE, 'w') as f:
|
||||
json.dump(unique_klines, f)
|
||||
|
||||
logging.info(f"Finished data stream for SID={sid}. Sending final payload of {len(unique_klines)} klines.")
|
||||
socketio.emit('history_finished', {'klines_1m': unique_klines}, to=sid)
|
||||
# Fill missing data and get all klines
|
||||
all_klines = fill_missing_data(selected_csv_file)
|
||||
|
||||
# Send progress update
|
||||
socketio.emit('history_progress', {'progress': 100}, to=sid)
|
||||
|
||||
logging.info(f"Finished data stream for SID={sid}. Sending final payload of {len(all_klines)} klines.")
|
||||
socketio.emit('history_finished', {'klines_1m': all_klines}, to=sid)
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error in stream_historical_data for SID={sid}: {e}", exc_info=True)
|
||||
@ -104,9 +330,13 @@ def binance_listener_thread():
|
||||
|
||||
if not current_bar or candle_timestamp > current_bar.get("time", 0):
|
||||
if current_bar:
|
||||
# The previous candle is now closed, emit it
|
||||
# The previous candle is now closed, emit it and save to CSV
|
||||
logging.info(f"Candle closed at {current_bar['close']}. Emitting 'candle_closed' event.")
|
||||
socketio.emit('candle_closed', current_bar)
|
||||
|
||||
# Append to selected CSV file
|
||||
if selected_csv_file:
|
||||
append_to_csv(selected_csv_file, current_bar)
|
||||
|
||||
current_bar = {"time": candle_timestamp, "open": price, "high": price, "low": price, "close": price}
|
||||
else:
|
||||
@ -135,6 +365,40 @@ def handle_connect():
|
||||
app_initialized = True
|
||||
socketio.start_background_task(target=stream_historical_data, sid=request.sid)
|
||||
|
||||
@socketio.on('get_csv_files')
|
||||
def handle_get_csv_files():
|
||||
"""Send available CSV files to client."""
|
||||
logging.info(f"Received get_csv_files request from SID={request.sid}")
|
||||
csv_files = get_available_csv_files()
|
||||
default_file = get_default_csv_file()
|
||||
logging.info(f"Sending CSV files list: {len(csv_files)} files, default: {default_file}")
|
||||
socketio.emit('csv_files_list', {
|
||||
'files': csv_files,
|
||||
'selected': default_file
|
||||
})
|
||||
|
||||
@socketio.on('select_csv_file')
|
||||
def handle_select_csv_file(data):
|
||||
"""Handle CSV file selection by user."""
|
||||
global selected_csv_file
|
||||
|
||||
logging.info(f"Received select_csv_file request from SID={request.sid} with data: {data}")
|
||||
filename = data.get('filename')
|
||||
if filename:
|
||||
csv_files = get_available_csv_files()
|
||||
valid_files = [f['filename'] for f in csv_files]
|
||||
|
||||
if filename in valid_files:
|
||||
selected_csv_file = filename
|
||||
save_user_preference(filename)
|
||||
logging.info(f"User selected CSV file: {filename}")
|
||||
|
||||
# Stream new historical data
|
||||
socketio.start_background_task(target=stream_historical_data, sid=request.sid)
|
||||
else:
|
||||
logging.error(f"Invalid CSV file selected: {filename}")
|
||||
socketio.emit('error', {'message': f'Invalid CSV file: {filename}'})
|
||||
|
||||
# --- Flask Routes ---
|
||||
@app.route('/')
|
||||
def index():
|
||||
@ -143,4 +407,4 @@ def index():
|
||||
# --- Main Application Execution ---
|
||||
if __name__ == '__main__':
|
||||
logging.info("Starting Flask-SocketIO server...")
|
||||
socketio.run(app, host='0.0.0.0', port=5000, allow_unsafe_werkzeug=True, debug=False)
|
||||
socketio.run(app, host='0.0.0.0', port=5000, allow_unsafe_werkzeug=True, debug=False)
|
||||
|
||||
Reference in New Issue
Block a user