dane z plików - nie chodzi

This commit is contained in:
2025-07-17 00:12:33 +02:00
parent 2a556781da
commit f9d76c85bd
5 changed files with 596 additions and 109 deletions

344
app.py
View File

@ -3,6 +3,8 @@ import logging
import asyncio
import os
import json
import csv
import re
from flask import Flask, render_template, request
from flask_socketio import SocketIO
from binance import Client
@ -13,6 +15,8 @@ from datetime import datetime, timedelta
# --- Configuration ---
SYMBOL = 'ETHUSDT'
HISTORY_FILE = 'historical_data_1m.json'
DATA_FOLDER = 'data'
USER_PREFERENCES_FILE = 'user_preferences.json'
RESTART_TIMEOUT_S = 15
BINANCE_WS_URL = f"wss://stream.binance.com:9443/ws/{SYMBOL.lower()}@trade"
@ -28,54 +32,276 @@ socketio = SocketIO(app, async_mode='threading')
app_initialized = False
app_init_lock = Lock()
current_bar = {} # To track the currently forming 1-minute candle
selected_csv_file = None # Currently selected CSV file
csv_file_lock = Lock() # Lock for CSV file operations
# --- Utility Functions ---
def get_available_csv_files():
"""Get list of available CSV files with their start dates."""
csv_files = []
if not os.path.exists(DATA_FOLDER):
os.makedirs(DATA_FOLDER)
return csv_files
for filename in os.listdir(DATA_FOLDER):
if filename.endswith('.csv') and SYMBOL in filename:
# Extract date from filename like ETHUSDT_20250101.csv
match = re.search(r'(\d{8})', filename)
if match:
date_str = match.group(1)
try:
start_date = datetime.strptime(date_str, '%Y%m%d')
file_path = os.path.join(DATA_FOLDER, filename)
file_size = os.path.getsize(file_path)
csv_files.append({
'filename': filename,
'start_date_str': start_date.strftime('%Y-%m-%d'),
'date_str': date_str,
'size': file_size,
'display_name': f"{start_date.strftime('%Y-%m-%d')} ({filename})"
})
logging.info(f"Found CSV file: {filename}, size: {file_size}, date: {date_str}")
except ValueError:
logging.warning(f"Could not parse date from filename: {filename}")
continue
# Sort by start date (newest first)
csv_files.sort(key=lambda x: x['date_str'], reverse=True)
logging.info(f"Available CSV files: {[f['filename'] for f in csv_files]}")
return csv_files
def get_default_csv_file():
"""Get the default CSV file (smallest one or last used)."""
# Try to load last used file
if os.path.exists(USER_PREFERENCES_FILE):
try:
with open(USER_PREFERENCES_FILE, 'r') as f:
prefs = json.load(f)
last_file = prefs.get('last_csv_file')
if last_file and os.path.exists(os.path.join(DATA_FOLDER, last_file)):
logging.info(f"Using last selected file: {last_file}")
return last_file
except:
pass
# Fall back to smallest file
csv_files = get_available_csv_files()
if csv_files:
# Filter to exclude the large Binance file for better performance
filtered_files = [f for f in csv_files if not f['filename'].endswith('_Binance.csv')]
if filtered_files:
smallest_file = min(filtered_files, key=lambda x: x['size'])
logging.info(f"Using smallest filtered file: {smallest_file['filename']} ({smallest_file['size']} bytes)")
else:
smallest_file = min(csv_files, key=lambda x: x['size'])
logging.info(f"Using smallest file: {smallest_file['filename']} ({smallest_file['size']} bytes)")
return smallest_file['filename']
logging.warning("No CSV files found")
return None
def save_user_preference(csv_filename):
"""Save the user's CSV file preference."""
prefs = {}
if os.path.exists(USER_PREFERENCES_FILE):
try:
with open(USER_PREFERENCES_FILE, 'r') as f:
prefs = json.load(f)
except:
pass
prefs['last_csv_file'] = csv_filename
with open(USER_PREFERENCES_FILE, 'w') as f:
json.dump(prefs, f)
def read_csv_data(csv_filename):
"""Read historical data from CSV file."""
csv_path = os.path.join(DATA_FOLDER, csv_filename)
if not os.path.exists(csv_path):
return []
klines = []
try:
with open(csv_path, 'r', newline='', encoding='utf-8') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
# Convert CSV row to kline format
open_time = datetime.strptime(row['Open time'], '%Y-%m-%d %H:%M:%S')
close_time = datetime.strptime(row['Close time'].split('.')[0], '%Y-%m-%d %H:%M:%S')
# =================================================================
# --- FIX START: Convert string values to numeric types ---
# The original code passed the string values from the CSV directly.
# This caused the historical data to be misinterpreted by the chart.
# By converting to float/int here, we ensure data consistency.
# =================================================================
kline = [
int(open_time.timestamp() * 1000), # Open time (ms)
float(row['Open']), # Open
float(row['High']), # High
float(row['Low']), # Low
float(row['Close']), # Close
float(row['Volume']), # Volume
int(close_time.timestamp() * 1000), # Close time (ms)
float(row['Quote asset volume']), # Quote asset volume
int(row['Number of trades']), # Number of trades
float(row['Taker buy base asset volume']), # Taker buy base asset volume
float(row['Taker buy quote asset volume']), # Taker buy quote asset volume
float(row['Ignore']) # Ignore
]
# --- FIX END ---
# =================================================================
klines.append(kline)
except Exception as e:
logging.error(f"Error reading CSV file {csv_filename}: {e}")
return []
return klines
def append_to_csv(csv_filename, candle_data):
"""Append new candle data to CSV file."""
csv_path = os.path.join(DATA_FOLDER, csv_filename)
try:
with csv_file_lock:
# Convert candle data to CSV row
open_time = datetime.fromtimestamp(candle_data['time'])
close_time = open_time.replace(second=59, microsecond=999000)
row = [
open_time.strftime('%Y-%m-%d %H:%M:%S'),
candle_data['open'],
candle_data['high'],
candle_data['low'],
candle_data['close'],
0.0, # Volume (placeholder)
close_time.strftime('%Y-%m-%d %H:%M:%S.%f')[:-3],
0.0, # Quote asset volume (placeholder)
1, # Number of trades (placeholder)
0.0, # Taker buy base asset volume (placeholder)
0.0, # Taker buy quote asset volume (placeholder)
0.0 # Ignore
]
# Check if file exists and has header
file_exists = os.path.exists(csv_path)
with open(csv_path, 'a', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
# Write header if file is new
if not file_exists:
headers = [
'Open time', 'Open', 'High', 'Low', 'Close', 'Volume',
'Close time', 'Quote asset volume', 'Number of trades',
'Taker buy base asset volume', 'Taker buy quote asset volume', 'Ignore'
]
writer.writerow(headers)
writer.writerow(row)
except Exception as e:
logging.error(f"Error appending to CSV file {csv_filename}: {e}")
def fill_missing_data(csv_filename):
"""Fill missing data by downloading from Binance."""
global selected_csv_file
try:
logging.info(f"Checking for missing data in {csv_filename}")
# Get the start date from filename
match = re.search(r'(\d{8})', csv_filename)
if not match:
return
date_str = match.group(1)
start_date = datetime.strptime(date_str, '%Y%m%d')
# Read existing data
existing_data = read_csv_data(csv_filename)
# Determine what data we need to fetch
if existing_data:
# Get the last timestamp from existing data
last_timestamp = existing_data[-1][0] // 1000 # Convert to seconds
fetch_start = datetime.fromtimestamp(last_timestamp) + timedelta(minutes=1)
else:
fetch_start = start_date
# Fetch missing data up to current time
now = datetime.now()
if fetch_start >= now:
logging.info(f"No missing data for {csv_filename}")
return existing_data
logging.info(f"Fetching missing data from {fetch_start} to {now}")
client = Client()
missing_klines = client.get_historical_klines(
SYMBOL,
Client.KLINE_INTERVAL_1MINUTE,
start_str=fetch_start.strftime('%Y-%m-%d %H:%M:%S'),
end_str=now.strftime('%Y-%m-%d %H:%M:%S')
)
if missing_klines:
# Append missing data to CSV
csv_path = os.path.join(DATA_FOLDER, csv_filename)
with csv_file_lock:
with open(csv_path, 'a', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
for kline in missing_klines:
open_time = datetime.fromtimestamp(kline[0] / 1000)
close_time = datetime.fromtimestamp(kline[6] / 1000)
row = [
open_time.strftime('%Y-%m-%d %H:%M:%S'),
kline[1], kline[2], kline[3], kline[4], kline[5],
close_time.strftime('%Y-%m-%d %H:%M:%S.%f')[:-3],
kline[7], kline[8], kline[9], kline[10], kline[11]
]
writer.writerow(row)
logging.info(f"Added {len(missing_klines)} missing candles to {csv_filename}")
existing_data.extend(missing_klines)
return existing_data
except Exception as e:
logging.error(f"Error filling missing data for {csv_filename}: {e}")
return existing_data if 'existing_data' in locals() else []
# --- Historical Data Streaming ---
def stream_historical_data(sid):
"""
Fetches the last week of historical 1-minute kline data from Binance,
saves it to a file, and sends it to the connected client.
Loads historical data from the selected CSV file and sends it to the client.
"""
global selected_csv_file
try:
logging.info(f"Starting historical data stream for SID={sid}")
client = Client()
# --- NEW SOLUTION: Load data for the last week ---
logging.info(f"Fetching historical data for the last 7 days for SID={sid}")
# The `python-binance` library allows using relative date strings.
# This single call is more efficient for this use case.
all_klines = client.get_historical_klines(
SYMBOL,
Client.KLINE_INTERVAL_1MINUTE,
start_str="8 weeks ago UTC" # Fetches data starting from 8 weeks ago until now
)
# Get selected CSV file or default
if not selected_csv_file:
selected_csv_file = get_default_csv_file()
# --- ORIGINAL SOLUTION COMMENTED OUT ---
# num_chunks = 6
# chunk_size_days = 15
# end_date = datetime.utcnow()
# all_klines = []
#
# for i in range(num_chunks):
# start_date = end_date - timedelta(days=chunk_size_days)
# logging.info(f"Fetching chunk {i + 1}/{num_chunks} for SID={sid}")
# new_klines = client.get_historical_klines(SYMBOL, Client.KLINE_INTERVAL_1MINUTE, str(start_date), str(end_date))
# if new_klines:
# all_klines.extend(new_klines)
# # The progress emission is no longer needed for a single API call
# # socketio.emit('history_progress', {'progress': ((i + 1) / num_chunks) * 100}, to=sid)
# end_date = start_date
# socketio.sleep(0.05)
# --- END OF ORIGINAL SOLUTION ---
# The rest of the function processes the `all_klines` data as before
seen = set()
unique_klines = [kline for kline in sorted(all_klines, key=lambda x: x[0]) if tuple(kline) not in seen and not seen.add(tuple(kline))]
if not selected_csv_file:
# No CSV files available, create a default one
logging.warning("No CSV files available, creating default file")
selected_csv_file = f"ETHUSDT_{datetime.now().strftime('%Y%m%d')}.csv"
logging.info(f"Using CSV file: {selected_csv_file}")
with open(HISTORY_FILE, 'w') as f:
json.dump(unique_klines, f)
logging.info(f"Finished data stream for SID={sid}. Sending final payload of {len(unique_klines)} klines.")
socketio.emit('history_finished', {'klines_1m': unique_klines}, to=sid)
# Fill missing data and get all klines
all_klines = fill_missing_data(selected_csv_file)
# Send progress update
socketio.emit('history_progress', {'progress': 100}, to=sid)
logging.info(f"Finished data stream for SID={sid}. Sending final payload of {len(all_klines)} klines.")
socketio.emit('history_finished', {'klines_1m': all_klines}, to=sid)
except Exception as e:
logging.error(f"Error in stream_historical_data for SID={sid}: {e}", exc_info=True)
@ -104,9 +330,13 @@ def binance_listener_thread():
if not current_bar or candle_timestamp > current_bar.get("time", 0):
if current_bar:
# The previous candle is now closed, emit it
# The previous candle is now closed, emit it and save to CSV
logging.info(f"Candle closed at {current_bar['close']}. Emitting 'candle_closed' event.")
socketio.emit('candle_closed', current_bar)
# Append to selected CSV file
if selected_csv_file:
append_to_csv(selected_csv_file, current_bar)
current_bar = {"time": candle_timestamp, "open": price, "high": price, "low": price, "close": price}
else:
@ -135,6 +365,40 @@ def handle_connect():
app_initialized = True
socketio.start_background_task(target=stream_historical_data, sid=request.sid)
@socketio.on('get_csv_files')
def handle_get_csv_files():
"""Send available CSV files to client."""
logging.info(f"Received get_csv_files request from SID={request.sid}")
csv_files = get_available_csv_files()
default_file = get_default_csv_file()
logging.info(f"Sending CSV files list: {len(csv_files)} files, default: {default_file}")
socketio.emit('csv_files_list', {
'files': csv_files,
'selected': default_file
})
@socketio.on('select_csv_file')
def handle_select_csv_file(data):
"""Handle CSV file selection by user."""
global selected_csv_file
logging.info(f"Received select_csv_file request from SID={request.sid} with data: {data}")
filename = data.get('filename')
if filename:
csv_files = get_available_csv_files()
valid_files = [f['filename'] for f in csv_files]
if filename in valid_files:
selected_csv_file = filename
save_user_preference(filename)
logging.info(f"User selected CSV file: {filename}")
# Stream new historical data
socketio.start_background_task(target=stream_historical_data, sid=request.sid)
else:
logging.error(f"Invalid CSV file selected: {filename}")
socketio.emit('error', {'message': f'Invalid CSV file: {filename}'})
# --- Flask Routes ---
@app.route('/')
def index():
@ -143,4 +407,4 @@ def index():
# --- Main Application Execution ---
if __name__ == '__main__':
logging.info("Starting Flask-SocketIO server...")
socketio.run(app, host='0.0.0.0', port=5000, allow_unsafe_werkzeug=True, debug=False)
socketio.run(app, host='0.0.0.0', port=5000, allow_unsafe_werkzeug=True, debug=False)

102
data/data_miner.py Normal file
View File

@ -0,0 +1,102 @@
import csv
from datetime import datetime
def filter_csv_by_date(input_file, output_file, start_date_str):
"""
Reads a large CSV file line by line, filters by a start date,
and writes the results to a new file.
Args:
input_file (str): Path to the large input CSV.
output_file (str): Path to the output CSV file.
start_date_str (str): The start date in 'YYYY-MM-DD' format.
"""
try:
# Convert the start date string into a datetime object for comparison
start_date = datetime.strptime(start_date_str, '%Y-%m-%d')
print(f"Filtering for dates on or after {start_date_str}...")
print(f"Output will be saved to: {output_file}")
# Open the input and output files
with open(input_file, 'r', newline='') as infile, \
open(output_file, 'w', newline='') as outfile:
reader = csv.reader(infile)
writer = csv.writer(outfile)
# 1. Read and write the header
header = next(reader)
writer.writerow(header)
# Find the index of the 'Open time' column
try:
date_column_index = header.index('Open time')
except ValueError:
print("Error: 'Open time' column not found in the header.")
return
# 2. Process the rest of the file line by line
processed_lines = 0
written_lines = 0
for row in reader:
processed_lines += 1
# Avoid errors from empty or malformed rows
if not row:
continue
try:
# Get the date string from the correct column
row_date_str = row[date_column_index]
# Convert the row's date string to a datetime object
row_date = datetime.strptime(row_date_str, '%Y-%m-%d %H:%M:%S')
# 3. Compare dates and write to new file if it's a match
if row_date >= start_date:
writer.writerow(row)
written_lines += 1
except (ValueError, IndexError) as e:
# This will catch errors if a date is in the wrong format
# or if a row doesn't have enough columns.
print(f"Skipping malformed row {processed_lines + 1}: {row}. Error: {e}")
continue
# Optional: Print progress for very long operations
if processed_lines % 5000000 == 0:
print(f"Processed {processed_lines:,} lines...")
print("\n--- Processing Complete ---")
print(f"Total lines processed: {processed_lines:,}")
print(f"Total lines written: {written_lines:,}")
print(f"Filtered data saved to: {output_file}")
except FileNotFoundError:
print(f"Error: The file '{input_file}' was not found.")
except Exception as e:
print(f"An unexpected error occurred: {e}")
# --- Configuration ---
# 1. Replace with the name of your large input file
input_filename = 'ETHUSDT_1m_Binance.csv'
# 2. Provide the start date in YYYY-MM-DD format
start_date_filter = '2025-07-01' # <-- REPLACE THIS
# 3. The output filename is generated automatically in the requested format
if start_date_filter != 'YYYY-MM-DD':
# This line removes the hyphens for the filename
filename_date_part = start_date_filter.replace('-', '')
output_filename = f'ETHUSDT_{filename_date_part}.csv'
else:
output_filename = 'ETHUSDT_unfiltered.csv'
# --- Run the script ---
if start_date_filter == 'YYYY-MM-DD':
print("Please update the 'start_date_filter' variable in the script with a date like '2025-07-01'.")
else:
filter_csv_by_date(input_filename, output_filename, start_date_filter)

File diff suppressed because one or more lines are too long

View File

@ -1,50 +1,62 @@
/**
* Aggregates fine-grained candle data into a larger timeframe.
* For example, it can convert 1-minute candles into 5-minute candles.
*
* @param {Array<Object>} data - An array of candle objects, sorted by time.
* Each object must have { time, open, high, low, close }.
* @param {number} intervalMinutes - The desired new candle interval in minutes (e.g., 5 for 5m).
* @returns {Array<Object>} A new array of aggregated candle objects.
*/
function aggregateCandles(data, intervalMinutes) {
if (!data || data.length === 0 || !intervalMinutes || intervalMinutes < 1) {
return [];
}
const intervalSeconds = intervalMinutes * 60;
const aggregated = [];
let currentAggCandle = null;
data.forEach(candle => {
// Calculate the timestamp for the start of the interval bucket
const bucketTimestamp = candle.time - (candle.time % intervalSeconds);
if (!currentAggCandle || bucketTimestamp !== currentAggCandle.time) {
// If a previous aggregated candle exists, push it to the results
if (currentAggCandle) {
aggregated.push(currentAggCandle);
}
// Start a new aggregated candle
currentAggCandle = {
time: bucketTimestamp,
open: candle.open,
high: candle.high,
low: candle.low,
close: candle.close,
};
} else {
// This candle belongs to the current aggregated candle, so update it
currentAggCandle.high = Math.max(currentAggCandle.high, candle.high);
currentAggCandle.low = Math.min(currentAggCandle.low, candle.low);
currentAggCandle.close = candle.close; // The close is always the latest one
/**
* Aggregates fine-grained candle data into a larger timeframe.
* For example, it can convert 1-minute candles into 5-minute candles.
*
* @param {Array<Object>} data - An array of candle objects, sorted by time.
* Each object must have { time, open, high, low, close }.
* @param {number} intervalMinutes - The desired new candle interval in minutes (e.g., 5 for 5m).
* @returns {Array<Object>} A new array of aggregated candle objects.
*/
function aggregateCandles(data, intervalMinutes) {
if (!data || data.length === 0 || !intervalMinutes || intervalMinutes < 1) {
return [];
}
});
// Add the last aggregated candle if it exists
if (currentAggCandle) {
aggregated.push(currentAggCandle);
const intervalSeconds = intervalMinutes * 60;
const aggregated = [];
let currentAggCandle = null;
data.forEach(candle => {
// Validate candle data
if (!candle || !candle.time ||
isNaN(candle.open) || isNaN(candle.high) ||
isNaN(candle.low) || isNaN(candle.close) ||
candle.open <= 0 || candle.high <= 0 ||
candle.low <= 0 || candle.close <= 0) {
console.warn('Skipping invalid candle during aggregation:', candle);
return; // Skip this candle
}
// Calculate the timestamp for the start of the interval bucket
// Properly align to interval boundaries (e.g., 5-min intervals start at :00, :05, :10, etc.)
const bucketTimestamp = Math.floor(candle.time / intervalSeconds) * intervalSeconds;
if (!currentAggCandle || bucketTimestamp !== currentAggCandle.time) {
// If a previous aggregated candle exists, push it to the results
if (currentAggCandle) {
aggregated.push(currentAggCandle);
}
// Start a new aggregated candle
currentAggCandle = {
time: bucketTimestamp,
open: candle.open,
high: candle.high,
low: candle.low,
close: candle.close,
};
} else {
// This candle belongs to the current aggregated candle, so update it
currentAggCandle.high = Math.max(currentAggCandle.high, candle.high);
currentAggCandle.low = Math.min(currentAggCandle.low, candle.low);
currentAggCandle.close = candle.close; // The close is always the latest one
}
});
// Add the last aggregated candle if it exists
if (currentAggCandle) {
aggregated.push(currentAggCandle);
}
return aggregated;
}
return aggregated;
}

View File

@ -130,6 +130,15 @@
<div id="progress-container" class="progress-bar-container">
<div class="progress-bar"></div>
</div>
<!-- CSV File Selection Dropdown -->
<div style="margin-top: 15px; width: 100%;">
<label for="csv-file-select" style="display: block; margin-bottom: 5px; font-size: 12px; color: var(--text-secondary);">Data Source:</label>
<select id="csv-file-select" style="width: 100%; background-color: var(--button-bg); border: 1px solid var(--border-color); color: var(--text-primary); padding: 6px; border-radius: 4px; font-size: 12px; cursor: pointer;">
<option value="">Loading...</option>
</select>
<div id="csv-info" style="font-size: 10px; color: var(--text-secondary); margin-top: 3px; text-align: center;"></div>
</div>
</div>
<div class="control-cell" id="indicator-cell-1"></div>
<div class="control-cell" id="indicator-cell-2"></div>
@ -192,6 +201,8 @@
const modalInput = document.getElementById('timeframe-input');
const modalPreviewText = document.getElementById('timeframe-preview-text');
const modalConfirmBtn = document.getElementById('timeframe-confirm-btn');
const csvFileSelect = document.getElementById('csv-file-select');
const csvInfoDiv = document.getElementById('csv-info');
function openModal(initialValue = '') {
modalOverlay.style.display = 'flex';
@ -246,19 +257,88 @@
manager.populateDropdowns();
const socket = io();
socket.on('connect', () => console.log('Socket.IO connected.'));
socket.on('connect', () => {
console.log('Socket.IO connected.');
// Request available CSV files
socket.emit('get_csv_files');
});
socket.on('history_progress', (data) => {
if (data && data.progress) progressBar.style.width = `${data.progress}%`;
});
socket.on('csv_files_list', (data) => {
console.log('Received CSV files list:', data);
populateCsvDropdown(data.files, data.selected);
});
function populateCsvDropdown(files, selectedFile) {
csvFileSelect.innerHTML = '';
if (files.length === 0) {
const option = document.createElement('option');
option.value = '';
option.textContent = 'No CSV files available';
csvFileSelect.appendChild(option);
csvInfoDiv.textContent = '';
return;
}
files.forEach(file => {
const option = document.createElement('option');
option.value = file.filename;
option.textContent = file.display_name;
if (file.filename === selectedFile) {
option.selected = true;
// Show info about selected file
const sizeInMB = (file.size / (1024 * 1024)).toFixed(1);
csvInfoDiv.textContent = `${sizeInMB} MB - ${file.filename}`;
}
csvFileSelect.appendChild(option);
});
}
csvFileSelect.addEventListener('change', (e) => {
const selectedFile = e.target.value;
if (selectedFile) {
console.log('User selected CSV file:', selectedFile);
// Update info display
const selectedOption = e.target.selectedOptions[0];
const files = Array.from(e.target.options).map(option => ({
filename: option.value,
display_name: option.textContent,
size: 0 // Will be updated by server response
}));
socket.emit('select_csv_file', { filename: selectedFile });
// Show loading state
progressContainer.style.display = 'block';
progressBar.style.width = '0%';
csvInfoDiv.textContent = 'Loading...';
}
});
socket.on('history_finished', (data) => {
if (!data || !data.klines_1m) return;
progressBar.style.width = '100%';
baseCandleData1m = data.klines_1m.map(k => ({
time: k[0] / 1000, open: parseFloat(k[1]), high: parseFloat(k[2]),
low: parseFloat(k[3]), close: parseFloat(k[4])
}));
baseCandleData1m = data.klines_1m
.map(k => ({
time: k[0] / 1000,
open: parseFloat(k[1]),
high: parseFloat(k[2]),
low: parseFloat(k[3]),
close: parseFloat(k[4])
}))
.filter(candle => {
// Filter out invalid candles with null, undefined, or NaN values
return candle.time &&
!isNaN(candle.open) && !isNaN(candle.high) &&
!isNaN(candle.low) && !isNaN(candle.close) &&
candle.open > 0 && candle.high > 0 &&
candle.low > 0 && candle.close > 0;
});
updateChartForTimeframe(true);
setTimeout(() => { progressContainer.style.display = 'none'; }, 500);
});
@ -266,6 +346,16 @@
// --- MODIFICATION START: Rewritten candle update and creation logic ---
function handleLiveUpdate(update) {
if (baseCandleData1m.length === 0 || displayedCandleData.length === 0) return;
// Validate the update data
if (!update || !update.time ||
isNaN(update.open) || isNaN(update.high) ||
isNaN(update.low) || isNaN(update.close) ||
update.open <= 0 || update.high <= 0 ||
update.low <= 0 || update.close <= 0) {
console.warn('Invalid update data received:', update);
return;
}
// First, ensure the base 1m data is up-to-date.
const lastBaseCandle = baseCandleData1m[baseCandleData1m.length - 1];
@ -278,20 +368,21 @@
const candleDurationSeconds = currentTimeframeMinutes * 60;
let lastDisplayedCandle = displayedCandleData[displayedCandleData.length - 1];
// Calculate which bucket this update belongs to using simple division
const updateBucketTime = Math.floor(update.time / candleDurationSeconds) * candleDurationSeconds;
// Check if the update belongs to the currently forming displayed candle
if (update.time >= lastDisplayedCandle.time && update.time < lastDisplayedCandle.time + candleDurationSeconds) {
if (updateBucketTime === lastDisplayedCandle.time) {
// It does, so just update the High, Low, and Close prices
lastDisplayedCandle.high = Math.max(lastDisplayedCandle.high, update.high);
lastDisplayedCandle.low = Math.min(lastDisplayedCandle.low, update.low);
lastDisplayedCandle.close = update.close;
candlestickSeries.update(lastDisplayedCandle);
} else if (update.time >= lastDisplayedCandle.time + candleDurationSeconds) {
} else if (updateBucketTime > lastDisplayedCandle.time) {
// This update is for a NEW candle.
const newCandleTime = Math.floor(update.time / candleDurationSeconds) * candleDurationSeconds;
// Create the new candle. Its O,H,L,C are all from this first tick.
const newCandle = {
time: newCandleTime,
time: updateBucketTime,
open: update.open,
high: update.high,
low: update.low,
@ -383,19 +474,37 @@
function updateChartForTimeframe(isFullReset = false) {
if (baseCandleData1m.length === 0) return;
const visibleTimeRange = isFullReset ? null : chart.timeScale().getVisibleTimeRange();
const newCandleData = aggregateCandles(baseCandleData1m, currentTimeframeMinutes);
if (newCandleData.length > 0) {
displayedCandleData = newCandleData;
candlestickSeries.setData(displayedCandleData);
chartTitle.textContent = `{{ symbol }} Chart (${currentTimeframeMinutes}m)`;
manager.recalculateAllAfterHistory(baseCandleData1m, displayedCandleData);
if (visibleTimeRange) {
chart.timeScale().setVisibleRange(visibleTimeRange);
try {
const visibleTimeRange = isFullReset ? null : chart.timeScale().getVisibleTimeRange();
const newCandleData = aggregateCandles(baseCandleData1m, currentTimeframeMinutes);
// Validate the aggregated data
const validCandleData = newCandleData.filter(candle => {
return candle && candle.time &&
!isNaN(candle.open) && !isNaN(candle.high) &&
!isNaN(candle.low) && !isNaN(candle.close) &&
candle.open > 0 && candle.high > 0 &&
candle.low > 0 && candle.close > 0;
});
if (validCandleData.length > 0) {
displayedCandleData = validCandleData;
candlestickSeries.setData(displayedCandleData);
chartTitle.textContent = `{{ symbol }} Chart (${currentTimeframeMinutes}m)`;
manager.recalculateAllAfterHistory(baseCandleData1m, displayedCandleData);
if (visibleTimeRange) {
chart.timeScale().setVisibleRange(visibleTimeRange);
} else {
chart.timeScale().fitContent();
}
} else {
chart.timeScale().fitContent();
console.warn('No valid candle data available for timeframe:', currentTimeframeMinutes);
}
} catch (error) {
console.error('Error updating chart for timeframe:', error);
console.error('Current timeframe:', currentTimeframeMinutes);
console.error('Base data length:', baseCandleData1m.length);
}
}