8.6 KiB
8.6 KiB
Improvement Roadmap - Hyperliquid Trading Bot
Overview
This document outlines the detailed implementation plan for transforming the trading bot into a production-ready system.
Phase 1: Foundation (Weeks 1-2)
Week 1: Security & Stability
Day 1-2: Critical Security Fixes
-
Implement Encrypted Key Storage
- Create
security/key_manager.py - Replace environment variable key access
- Add key rotation mechanism
- Files:
trade_executor.py,create_agent.py
- Create
-
Add Input Validation Framework
- Create
validation/trading_validator.py - Validate all trading parameters
- Add sanitization for user inputs
- Files:
position_manager.py,trade_executor.py
- Create
Day 3-4: Risk Management
-
Implement Circuit Breakers
- Create
risk/circuit_breaker.py - Add trading halt conditions
- Implement automatic recovery
- Files:
trade_executor.py,position_manager.py
- Create
-
Fix Import Resolution Issues
- Update relative imports
- Add
__init__.pyfiles where missing - Test all module imports
- Files:
main_app.py, all strategy files
Day 5-7: Code Quality
- Refactor Dashboard Display
- Extract
DashboardRendererclass - Split into market/strategy/position components
- Add configuration for display options
- Files:
main_app.py
- Extract
Week 2: Configuration & Error Handling
Day 8-9: Configuration Management
-
Create Centralized Configuration
- Create
config/settings.py - Move all magic numbers to config
- Add environment-specific configs
- Files: All Python files
- Create
-
Standardize Error Handling
- Create
utils/error_handlers.py - Implement retry decorators
- Add structured exception classes
- Files: All core modules
- Create
Day 10-12: Database Improvements
-
Implement Connection Pool
- Create
database/connection_pool.py - Replace direct SQLite connections
- Add connection health monitoring
- Files:
base_strategy.py, all data access files
- Create
-
Add Database Migrations
- Create
database/migrations/ - Version control schema changes
- Add rollback capabilities
- Files: Database schema files
- Create
Day 13-14: Basic Testing
- Create Test Framework
- Set up
tests/directory structure - Add pytest configuration
- Create test fixtures and mocks
- Files: New test files
- Set up
Phase 2: Performance & Testing (Weeks 3-4)
Week 3: Performance Optimization
Day 15-17: Caching Layer
- Implement Redis/Memory Cache
- Create
cache/cache_manager.py - Cache frequently accessed data
- Add cache invalidation logic
- Files:
data_fetcher.py,base_strategy.py
- Create
Day 18-19: Async Operations
- Convert to Async/Await
- Identify blocking operations
- Convert to async patterns
- Add async context managers
- Files:
live_market_utils.py, API calls
Day 20-21: Batch Processing
- Implement Batch Operations
- Batch database writes
- Bulk API requests
- Optimize data processing
- Files: Data processing modules
Week 4: Testing Framework
Day 22-24: Unit Tests
- Comprehensive Unit Test Suite
- Test all core classes
- Mock external dependencies
- Achieve >80% coverage
- Files:
tests/unit/
Day 25-26: Integration Tests
- End-to-End Testing
- Test complete workflows
- Mock Hyperliquid API
- Test process communication
- Files:
tests/integration/
Day 27-28: Paper Trading
- Paper Trading Mode
- Create simulation environment
- Mock trade execution
- Add performance tracking
- Files:
trade_executor.py, new simulation files
Phase 3: Monitoring & Observability (Weeks 5-6)
Week 5: Metrics & Monitoring
Day 29-31: Metrics Collection
- Add Prometheus Metrics
- Create
monitoring/metrics.py - Track key performance indicators
- Add custom business metrics
- Files: All core modules
- Create
Day 32-33: Health Checks
- Health Check System
- Create
monitoring/health_check.py - Monitor all system components
- Add dependency checks
- Files:
main_app.py, all processes
- Create
Day 34-35: Alerting
- Alerting System
- Create
monitoring/alerts.py - Configure alert rules
- Add notification channels
- Files: New alerting files
- Create
Week 6: Documentation & Developer Experience
Day 36-38: API Documentation
- Auto-Generated Docs
- Set up Sphinx/ MkDocs
- Document all public APIs
- Add code examples
- Files:
docs/directory
Day 39-40: Setup Improvements
- Interactive Setup
- Create setup wizard
- Validate configuration
- Add guided configuration
- Files:
setup.py, new setup files
Day 41-42: Examples & Guides
- Strategy Examples
- Create example strategies
- Add development tutorials
- Document best practices
- Files:
examples/,WIKI/
Phase 4: Advanced Features (Weeks 7-8)
Week 7: Advanced Risk Management
Day 43-45: Position Sizing
- Dynamic Position Sizing
- Volatility-based sizing
- Portfolio risk metrics
- Kelly criterion implementation
- Files:
position_manager.py, new risk modules
Day 46-47: Advanced Orders
- Advanced Order Types
- Stop-loss orders
- Take-profit orders
- Conditional orders
- Files:
trade_executor.py
Day 48-49: Portfolio Management
- Portfolio Optimization
- Correlation analysis
- Risk parity allocation
- Rebalancing logic
- Files: New portfolio modules
Week 8: Production Readiness
Day 50-52: Deployment
- Production Deployment
- Docker containerization
- Kubernetes manifests
- CI/CD pipeline
- Files:
docker/,.github/workflows/
Day 53-54: Performance Profiling
- Profiling Tools
- Performance monitoring
- Memory usage tracking
- Bottleneck identification
- Files: New profiling modules
Day 55-56: Final Polish
- Production Hardening
- Security audit
- Load testing
- Documentation review
- Files: All files
Implementation Guidelines
Daily Workflow
- Morning Standup: Review progress, identify blockers
- Development: Focus on assigned tasks
- Testing: Write tests alongside code
- Code Review: Peer review all changes
- Documentation: Update docs with changes
Quality Gates
- All code must pass linting and formatting
- New features require unit tests
- Integration tests for critical paths
- Security review for sensitive changes
Risk Mitigation
- Feature flags for new functionality
- Gradual rollout with monitoring
- Rollback procedures for each change
- Regular backup and recovery testing
Success Criteria
Phase 1 Success
- All security vulnerabilities fixed
- Import resolution issues resolved
- Basic test framework in place
- Configuration management implemented
Phase 2 Success
- Performance improvements measured
- Test coverage >80%
- Paper trading mode functional
- Async operations implemented
Phase 3 Success
- Monitoring dashboard operational
- Alerting system functional
- Documentation complete
- Developer experience improved
Phase 4 Success
- Production deployment ready
- Advanced features working
- Performance benchmarks met
- Security audit passed
Resource Requirements
Development Team
- Senior Python Developer: Lead architecture and security
- Backend Developer: Performance and database optimization
- DevOps Engineer: Deployment and monitoring
- QA Engineer: Testing framework and automation
Tools & Services
- Development: PyCharm/VSCode, Git, Docker
- Testing: Pytest, Mock, Coverage tools
- Monitoring: Prometheus, Grafana, AlertManager
- CI/CD: GitHub Actions, Docker Hub
- Documentation: Sphinx/MkDocs, ReadTheDocs
Infrastructure
- Development: Local development environment
- Testing: Staging environment with test data
- Production: Cloud deployment with monitoring
- Backup: Automated backup and recovery system
Timeline Summary
| Phase | Duration | Key Deliverables |
|---|---|---|
| Phase 1 | 2 weeks | Security fixes, basic testing, configuration |
| Phase 2 | 2 weeks | Performance optimization, comprehensive testing |
| Phase 3 | 2 weeks | Monitoring, documentation, developer tools |
| Phase 4 | 2 weeks | Advanced features, production deployment |
| Total | 8 weeks | Production-ready trading system |
This roadmap provides a structured approach to transforming the trading bot into a robust, scalable, and maintainable system suitable for production use.