WALK-FORWARD testing
This commit is contained in:
@ -3,5 +3,5 @@
|
||||
"current_signal": "SELL",
|
||||
"last_signal_change_utc": "2025-10-18T16:19:00+00:00",
|
||||
"signal_price": 3870.5,
|
||||
"last_checked_utc": "2025-10-18T16:29:05.035278+00:00"
|
||||
"last_checked_utc": "2025-10-18T16:40:05.039625+00:00"
|
||||
}
|
||||
@ -3,5 +3,5 @@
|
||||
"current_signal": "SELL",
|
||||
"last_signal_change_utc": "2025-10-14T00:00:00+00:00",
|
||||
"signal_price": 113026.0,
|
||||
"last_checked_utc": "2025-10-18T16:28:52.112584+00:00"
|
||||
"last_checked_utc": "2025-10-18T16:40:09.950516+00:00"
|
||||
}
|
||||
184
backtester.py
184
backtester.py
@ -53,8 +53,8 @@ def _run_single_simulation(df: pd.DataFrame, params: dict) -> list:
|
||||
|
||||
def simulation_worker(params: dict, db_path: str, coin: str, timeframe: str, start_date: str, end_date: str) -> tuple[dict, list]:
|
||||
"""
|
||||
A worker function for multiprocessing. It loads its own data, runs the
|
||||
simulation, and returns the parameters and results together.
|
||||
A worker function for multiprocessing. It loads its own data from the DB
|
||||
and then runs the simulation, returning the parameters and results together.
|
||||
"""
|
||||
df = pd.DataFrame()
|
||||
try:
|
||||
@ -76,8 +76,8 @@ def simulation_worker(params: dict, db_path: str, coin: str, timeframe: str, sta
|
||||
|
||||
class Backtester:
|
||||
"""
|
||||
A class to run historical simulations (backtests) with parameter optimization
|
||||
and forward testing on trading strategies, using multiple cores to speed up the process.
|
||||
A class to run a Walk-Forward Optimization, which is the gold standard
|
||||
for testing the robustness of a trading strategy.
|
||||
"""
|
||||
|
||||
def __init__(self, log_level: str, strategy_name_to_test: str):
|
||||
@ -86,67 +86,83 @@ class Backtester:
|
||||
|
||||
self.backtest_config = self._load_backtest_config(strategy_name_to_test)
|
||||
if not self.backtest_config:
|
||||
logging.error(f"Backtest configuration for '{strategy_name_to_test}' not found in '_data/backtesting_conf.json'.")
|
||||
logging.error(f"Backtest configuration for '{strategy_name_to_test}' not found.")
|
||||
sys.exit(1)
|
||||
|
||||
self.strategy_name = self.backtest_config.get('strategy_name')
|
||||
self.strategy_config = self._load_strategy_config()
|
||||
if not self.strategy_config:
|
||||
logging.error(f"Strategy '{self.strategy_name}' not found in '_data/strategies.json'.")
|
||||
logging.error(f"Strategy '{self.strategy_name}' not found.")
|
||||
sys.exit(1)
|
||||
|
||||
self.params = self.strategy_config.get('parameters', {})
|
||||
self.coin = self.params.get('coin')
|
||||
self.timeframe = self.params.get('timeframe')
|
||||
|
||||
self.forward_test_start_date = (datetime.now() - timedelta(weeks=4)).strftime("%Y-%m-%d")
|
||||
self.backtest_end_date = (datetime.now() - timedelta(weeks=4, days=1)).strftime("%Y-%m-%d")
|
||||
self.full_history_start_date = "2020-01-01"
|
||||
self.pool = None
|
||||
|
||||
def _load_backtest_config(self, name_to_test: str) -> dict:
|
||||
"""Loads the specific backtest configuration from the JSON file."""
|
||||
config_path = os.path.join("_data", "backtesting_conf.json")
|
||||
try:
|
||||
with open(config_path, 'r') as f:
|
||||
return json.load(f).get(name_to_test)
|
||||
with open(config_path, 'r') as f: return json.load(f).get(name_to_test)
|
||||
except (FileNotFoundError, json.JSONDecodeError) as e:
|
||||
logging.error(f"Could not load backtesting configuration: {e}")
|
||||
return None
|
||||
|
||||
def _load_strategy_config(self) -> dict:
|
||||
"""Loads the general strategy configuration."""
|
||||
config_path = os.path.join("_data", "strategies.json")
|
||||
try:
|
||||
with open(config_path, 'r') as f:
|
||||
return json.load(f).get(self.strategy_name)
|
||||
with open(config_path, 'r') as f: return json.load(f).get(self.strategy_name)
|
||||
except (FileNotFoundError, json.JSONDecodeError) as e:
|
||||
logging.error(f"Could not load strategy configuration: {e}")
|
||||
return None
|
||||
|
||||
def load_data(self, start_date, end_date) -> pd.DataFrame:
|
||||
"""Loads historical data for a specific period for single-threaded tasks."""
|
||||
table_name = f"{self.coin}_{self.timeframe}"
|
||||
logging.info(f"Loading data for {table_name} from {start_date} to {end_date}...")
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
query = f'SELECT * FROM "{table_name}" WHERE date(datetime_utc) >= ? AND date(datetime_utc) <= ? ORDER BY datetime_utc'
|
||||
df = pd.read_sql(query, conn, params=(start_date, end_date), parse_dates=['datetime_utc'])
|
||||
if df.empty:
|
||||
logging.warning("No data found for the specified date range.")
|
||||
return pd.DataFrame()
|
||||
|
||||
df.set_index('datetime_utc', inplace=True)
|
||||
return df
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to load data for backtest: {e}")
|
||||
return pd.DataFrame()
|
||||
def run_walk_forward_optimization(self, num_periods=10, in_sample_pct=0.9):
|
||||
"""
|
||||
Main function to orchestrate the walk-forward analysis.
|
||||
"""
|
||||
full_df = self.load_data("2020-01-01", datetime.now().strftime("%Y-%m-%d"))
|
||||
if full_df.empty: return
|
||||
|
||||
def run_optimization(self):
|
||||
"""
|
||||
Runs the backtest simulation for all parameter combinations in parallel,
|
||||
provides progress updates, and finds the best result.
|
||||
"""
|
||||
period_length = len(full_df) // num_periods
|
||||
all_out_of_sample_trades = []
|
||||
|
||||
for i in range(num_periods):
|
||||
logging.info(f"\n--- Starting Walk-Forward Period {i+1}/{num_periods} ---")
|
||||
|
||||
# 1. Define the In-Sample (training) and Out-of-Sample (testing) periods
|
||||
start_index = i * period_length
|
||||
in_sample_end_index = start_index + int(period_length * in_sample_pct)
|
||||
out_of_sample_end_index = start_index + period_length
|
||||
|
||||
if in_sample_end_index >= len(full_df) or out_of_sample_end_index > len(full_df):
|
||||
logging.warning("Not enough data for the full final period. Ending analysis.")
|
||||
break
|
||||
|
||||
in_sample_df = full_df.iloc[start_index:in_sample_end_index]
|
||||
out_of_sample_df = full_df.iloc[in_sample_end_index:out_of_sample_end_index]
|
||||
|
||||
logging.info(f"In-Sample: {in_sample_df.index[0].date()} to {in_sample_df.index[-1].date()}")
|
||||
logging.info(f"Out-of-Sample: {out_of_sample_df.index[0].date()} to {out_of_sample_df.index[-1].date()}")
|
||||
|
||||
# 2. Find the best parameters on the In-Sample data
|
||||
best_params = self._find_best_params(in_sample_df)
|
||||
if not best_params:
|
||||
logging.warning("No profitable parameters found in this period. Skipping.")
|
||||
continue
|
||||
|
||||
# 3. Test the best parameters on the Out-of-Sample data
|
||||
logging.info(f"Testing best params {best_params} on Out-of-Sample data...")
|
||||
out_of_sample_trades = _run_single_simulation(out_of_sample_df.copy(), best_params)
|
||||
all_out_of_sample_trades.extend(out_of_sample_trades)
|
||||
self._generate_report(out_of_sample_trades, f"Period {i+1} Out-of-Sample Results")
|
||||
|
||||
# 4. Generate a final report for all combined out-of-sample trades
|
||||
print("\n" + "="*50)
|
||||
self._generate_report(all_out_of_sample_trades, "AGGREGATE WALK-FORWARD PERFORMANCE")
|
||||
print("="*50)
|
||||
|
||||
def _find_best_params(self, df: pd.DataFrame) -> dict:
|
||||
"""Runs a multi-core optimization on a given slice of data."""
|
||||
param_configs = self.backtest_config.get('optimization_params', {})
|
||||
param_names = list(param_configs.keys())
|
||||
param_ranges = [range(p['start'], p['end'] + 1, p['step']) for p in param_configs.values()]
|
||||
@ -154,78 +170,46 @@ class Backtester:
|
||||
all_combinations = list(itertools.product(*param_ranges))
|
||||
param_dicts = [dict(zip(param_names, combo)) for combo in all_combinations]
|
||||
|
||||
logging.info(f"Starting optimization... Testing {len(all_combinations)} parameter combinations using up to 60 cores.")
|
||||
logging.info(f"Optimizing on {len(all_combinations)} combinations...")
|
||||
|
||||
num_cores = 60
|
||||
self.pool = multiprocessing.Pool(processes=num_cores)
|
||||
|
||||
worker = partial(
|
||||
simulation_worker,
|
||||
db_path=self.db_path,
|
||||
coin=self.coin,
|
||||
timeframe=self.timeframe,
|
||||
start_date=self.full_history_start_date,
|
||||
end_date=self.backtest_end_date
|
||||
)
|
||||
|
||||
results = []
|
||||
total_tasks = len(param_dicts)
|
||||
completed_tasks = 0
|
||||
last_update_time = time.time()
|
||||
|
||||
logging.info("Optimization running... Progress updates will be provided every minute.")
|
||||
|
||||
# Use imap_unordered to get results as they are completed
|
||||
for params_result, trades_result in self.pool.imap_unordered(worker, param_dicts):
|
||||
completed_tasks += 1
|
||||
if trades_result:
|
||||
total_pnl = sum(t['pnl_pct'] for t in trades_result)
|
||||
results.append({'params': params_result, 'pnl': total_pnl, 'trades': len(trades_result)})
|
||||
|
||||
current_time = time.time()
|
||||
if current_time - last_update_time >= 60:
|
||||
progress = (completed_tasks / total_tasks) * 100
|
||||
logging.info(f"Progress: {progress:.2f}% complete ({completed_tasks}/{total_tasks} combinations tested).")
|
||||
last_update_time = current_time
|
||||
|
||||
logging.info(f"Progress: 100.00% complete ({completed_tasks}/{total_tasks} combinations tested).")
|
||||
worker = partial(_run_single_simulation, df.copy())
|
||||
all_trades_results = self.pool.map(worker, param_dicts)
|
||||
|
||||
self.pool.close()
|
||||
self.pool.join()
|
||||
self.pool = None
|
||||
|
||||
if not results:
|
||||
logging.error("Optimization produced no trades. Cannot determine best parameters.")
|
||||
return
|
||||
results = []
|
||||
for i, trades in enumerate(all_trades_results):
|
||||
if trades:
|
||||
results.append({'params': param_dicts[i], 'pnl': sum(t['pnl_pct'] for t in trades)})
|
||||
|
||||
best_result = max(results, key=lambda x: x['pnl'])
|
||||
logging.info(f"\n--- Optimization Complete ---")
|
||||
logging.info(f"Best parameters found: {best_result['params']} with PNL: {best_result['pnl']*100:.2f}% over {best_result['trades']} trades.")
|
||||
if not results: return None
|
||||
return max(results, key=lambda x: x['pnl'])['params']
|
||||
|
||||
self.run_forward_test(best_result['params'])
|
||||
def load_data(self, start_date, end_date):
|
||||
# This is a simplified version for the main data load
|
||||
table_name = f"{self.coin}_{self.timeframe}"
|
||||
logging.info(f"Loading full dataset for {table_name}...")
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
query = f'SELECT * FROM "{table_name}" WHERE date(datetime_utc) >= ? AND date(datetime_utc) <= ? ORDER BY datetime_utc'
|
||||
df = pd.read_sql(query, conn, params=(start_date, end_date), parse_dates=['datetime_utc'])
|
||||
if df.empty:
|
||||
logging.warning("No data found for the specified date range.")
|
||||
return pd.DataFrame()
|
||||
df.set_index('datetime_utc', inplace=True)
|
||||
return df
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to load data for backtest: {e}")
|
||||
return pd.DataFrame()
|
||||
|
||||
def run_forward_test(self, best_params):
|
||||
"""Runs a backtest on the forward-testing period using the best parameters."""
|
||||
logging.info("\n--- Starting Forward Test (Walk-Forward Validation) ---")
|
||||
forward_test_df = self.load_data(self.forward_test_start_date, datetime.now().strftime("%Y-%m-%d"))
|
||||
if forward_test_df.empty:
|
||||
return
|
||||
|
||||
trades = _run_single_simulation(forward_test_df, best_params)
|
||||
|
||||
print("\n--- Final Comparison Report ---")
|
||||
print(f"\nBest Parameters from Backtest: {best_params}")
|
||||
|
||||
print("\n--- Backtest Period Performance (Historical) ---")
|
||||
backtest_df = self.load_data(self.full_history_start_date, self.backtest_end_date)
|
||||
historical_trades = _run_single_simulation(backtest_df, best_params)
|
||||
self._generate_report(historical_trades)
|
||||
|
||||
print("\n--- Forward Test Performance (Last 4 Weeks) ---")
|
||||
self._generate_report(trades)
|
||||
|
||||
def _generate_report(self, trades: list):
|
||||
def _generate_report(self, trades: list, title: str):
|
||||
"""Calculates and prints key performance metrics."""
|
||||
print(f"\n--- {title} ---")
|
||||
if not trades:
|
||||
print("No trades were executed during this period.")
|
||||
return
|
||||
@ -240,7 +224,7 @@ class Backtester:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run a historical backtest with optimization for a trading strategy.")
|
||||
parser = argparse.ArgumentParser(description="Run a Walk-Forward Optimization for a trading strategy.")
|
||||
parser.add_argument("--strategy", required=True, help="The name of the backtest config to run (from backtesting_conf.json).")
|
||||
parser.add_argument("--log-level", default="normal", choices=['off', 'normal', 'debug'])
|
||||
args = parser.parse_args()
|
||||
@ -251,9 +235,9 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
try:
|
||||
backtester.run_optimization()
|
||||
backtester.run_walk_forward_optimization()
|
||||
except KeyboardInterrupt:
|
||||
logging.info("\nBacktest optimization cancelled by user.")
|
||||
logging.info("\nWalk-Forward Optimization cancelled by user.")
|
||||
finally:
|
||||
if backtester.pool:
|
||||
logging.info("Terminating worker processes...")
|
||||
|
||||
Reference in New Issue
Block a user