Files
personal_TV/app.py
2025-07-17 00:12:33 +02:00

411 lines
17 KiB
Python

import time
import logging
import asyncio
import os
import json
import csv
import re
from flask import Flask, render_template, request
from flask_socketio import SocketIO
from binance import Client
import websockets
from threading import Lock
from datetime import datetime, timedelta
# --- Configuration ---
SYMBOL = 'ETHUSDT'
HISTORY_FILE = 'historical_data_1m.json'
DATA_FOLDER = 'data'
USER_PREFERENCES_FILE = 'user_preferences.json'
RESTART_TIMEOUT_S = 15
BINANCE_WS_URL = f"wss://stream.binance.com:9443/ws/{SYMBOL.lower()}@trade"
# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Flask App Initialization ---
app = Flask(__name__)
app.config['SECRET_KEY'] = 'secret!'
socketio = SocketIO(app, async_mode='threading')
# --- Global State ---
app_initialized = False
app_init_lock = Lock()
current_bar = {} # To track the currently forming 1-minute candle
selected_csv_file = None # Currently selected CSV file
csv_file_lock = Lock() # Lock for CSV file operations
# --- Utility Functions ---
def get_available_csv_files():
"""Get list of available CSV files with their start dates."""
csv_files = []
if not os.path.exists(DATA_FOLDER):
os.makedirs(DATA_FOLDER)
return csv_files
for filename in os.listdir(DATA_FOLDER):
if filename.endswith('.csv') and SYMBOL in filename:
# Extract date from filename like ETHUSDT_20250101.csv
match = re.search(r'(\d{8})', filename)
if match:
date_str = match.group(1)
try:
start_date = datetime.strptime(date_str, '%Y%m%d')
file_path = os.path.join(DATA_FOLDER, filename)
file_size = os.path.getsize(file_path)
csv_files.append({
'filename': filename,
'start_date_str': start_date.strftime('%Y-%m-%d'),
'date_str': date_str,
'size': file_size,
'display_name': f"{start_date.strftime('%Y-%m-%d')} ({filename})"
})
logging.info(f"Found CSV file: {filename}, size: {file_size}, date: {date_str}")
except ValueError:
logging.warning(f"Could not parse date from filename: {filename}")
continue
# Sort by start date (newest first)
csv_files.sort(key=lambda x: x['date_str'], reverse=True)
logging.info(f"Available CSV files: {[f['filename'] for f in csv_files]}")
return csv_files
def get_default_csv_file():
"""Get the default CSV file (smallest one or last used)."""
# Try to load last used file
if os.path.exists(USER_PREFERENCES_FILE):
try:
with open(USER_PREFERENCES_FILE, 'r') as f:
prefs = json.load(f)
last_file = prefs.get('last_csv_file')
if last_file and os.path.exists(os.path.join(DATA_FOLDER, last_file)):
logging.info(f"Using last selected file: {last_file}")
return last_file
except:
pass
# Fall back to smallest file
csv_files = get_available_csv_files()
if csv_files:
# Filter to exclude the large Binance file for better performance
filtered_files = [f for f in csv_files if not f['filename'].endswith('_Binance.csv')]
if filtered_files:
smallest_file = min(filtered_files, key=lambda x: x['size'])
logging.info(f"Using smallest filtered file: {smallest_file['filename']} ({smallest_file['size']} bytes)")
else:
smallest_file = min(csv_files, key=lambda x: x['size'])
logging.info(f"Using smallest file: {smallest_file['filename']} ({smallest_file['size']} bytes)")
return smallest_file['filename']
logging.warning("No CSV files found")
return None
def save_user_preference(csv_filename):
"""Save the user's CSV file preference."""
prefs = {}
if os.path.exists(USER_PREFERENCES_FILE):
try:
with open(USER_PREFERENCES_FILE, 'r') as f:
prefs = json.load(f)
except:
pass
prefs['last_csv_file'] = csv_filename
with open(USER_PREFERENCES_FILE, 'w') as f:
json.dump(prefs, f)
def read_csv_data(csv_filename):
"""Read historical data from CSV file."""
csv_path = os.path.join(DATA_FOLDER, csv_filename)
if not os.path.exists(csv_path):
return []
klines = []
try:
with open(csv_path, 'r', newline='', encoding='utf-8') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
# Convert CSV row to kline format
open_time = datetime.strptime(row['Open time'], '%Y-%m-%d %H:%M:%S')
close_time = datetime.strptime(row['Close time'].split('.')[0], '%Y-%m-%d %H:%M:%S')
# =================================================================
# --- FIX START: Convert string values to numeric types ---
# The original code passed the string values from the CSV directly.
# This caused the historical data to be misinterpreted by the chart.
# By converting to float/int here, we ensure data consistency.
# =================================================================
kline = [
int(open_time.timestamp() * 1000), # Open time (ms)
float(row['Open']), # Open
float(row['High']), # High
float(row['Low']), # Low
float(row['Close']), # Close
float(row['Volume']), # Volume
int(close_time.timestamp() * 1000), # Close time (ms)
float(row['Quote asset volume']), # Quote asset volume
int(row['Number of trades']), # Number of trades
float(row['Taker buy base asset volume']), # Taker buy base asset volume
float(row['Taker buy quote asset volume']), # Taker buy quote asset volume
float(row['Ignore']) # Ignore
]
# --- FIX END ---
# =================================================================
klines.append(kline)
except Exception as e:
logging.error(f"Error reading CSV file {csv_filename}: {e}")
return []
return klines
def append_to_csv(csv_filename, candle_data):
"""Append new candle data to CSV file."""
csv_path = os.path.join(DATA_FOLDER, csv_filename)
try:
with csv_file_lock:
# Convert candle data to CSV row
open_time = datetime.fromtimestamp(candle_data['time'])
close_time = open_time.replace(second=59, microsecond=999000)
row = [
open_time.strftime('%Y-%m-%d %H:%M:%S'),
candle_data['open'],
candle_data['high'],
candle_data['low'],
candle_data['close'],
0.0, # Volume (placeholder)
close_time.strftime('%Y-%m-%d %H:%M:%S.%f')[:-3],
0.0, # Quote asset volume (placeholder)
1, # Number of trades (placeholder)
0.0, # Taker buy base asset volume (placeholder)
0.0, # Taker buy quote asset volume (placeholder)
0.0 # Ignore
]
# Check if file exists and has header
file_exists = os.path.exists(csv_path)
with open(csv_path, 'a', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
# Write header if file is new
if not file_exists:
headers = [
'Open time', 'Open', 'High', 'Low', 'Close', 'Volume',
'Close time', 'Quote asset volume', 'Number of trades',
'Taker buy base asset volume', 'Taker buy quote asset volume', 'Ignore'
]
writer.writerow(headers)
writer.writerow(row)
except Exception as e:
logging.error(f"Error appending to CSV file {csv_filename}: {e}")
def fill_missing_data(csv_filename):
"""Fill missing data by downloading from Binance."""
global selected_csv_file
try:
logging.info(f"Checking for missing data in {csv_filename}")
# Get the start date from filename
match = re.search(r'(\d{8})', csv_filename)
if not match:
return
date_str = match.group(1)
start_date = datetime.strptime(date_str, '%Y%m%d')
# Read existing data
existing_data = read_csv_data(csv_filename)
# Determine what data we need to fetch
if existing_data:
# Get the last timestamp from existing data
last_timestamp = existing_data[-1][0] // 1000 # Convert to seconds
fetch_start = datetime.fromtimestamp(last_timestamp) + timedelta(minutes=1)
else:
fetch_start = start_date
# Fetch missing data up to current time
now = datetime.now()
if fetch_start >= now:
logging.info(f"No missing data for {csv_filename}")
return existing_data
logging.info(f"Fetching missing data from {fetch_start} to {now}")
client = Client()
missing_klines = client.get_historical_klines(
SYMBOL,
Client.KLINE_INTERVAL_1MINUTE,
start_str=fetch_start.strftime('%Y-%m-%d %H:%M:%S'),
end_str=now.strftime('%Y-%m-%d %H:%M:%S')
)
if missing_klines:
# Append missing data to CSV
csv_path = os.path.join(DATA_FOLDER, csv_filename)
with csv_file_lock:
with open(csv_path, 'a', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
for kline in missing_klines:
open_time = datetime.fromtimestamp(kline[0] / 1000)
close_time = datetime.fromtimestamp(kline[6] / 1000)
row = [
open_time.strftime('%Y-%m-%d %H:%M:%S'),
kline[1], kline[2], kline[3], kline[4], kline[5],
close_time.strftime('%Y-%m-%d %H:%M:%S.%f')[:-3],
kline[7], kline[8], kline[9], kline[10], kline[11]
]
writer.writerow(row)
logging.info(f"Added {len(missing_klines)} missing candles to {csv_filename}")
existing_data.extend(missing_klines)
return existing_data
except Exception as e:
logging.error(f"Error filling missing data for {csv_filename}: {e}")
return existing_data if 'existing_data' in locals() else []
# --- Historical Data Streaming ---
def stream_historical_data(sid):
"""
Loads historical data from the selected CSV file and sends it to the client.
"""
global selected_csv_file
try:
logging.info(f"Starting historical data stream for SID={sid}")
# Get selected CSV file or default
if not selected_csv_file:
selected_csv_file = get_default_csv_file()
if not selected_csv_file:
# No CSV files available, create a default one
logging.warning("No CSV files available, creating default file")
selected_csv_file = f"ETHUSDT_{datetime.now().strftime('%Y%m%d')}.csv"
logging.info(f"Using CSV file: {selected_csv_file}")
# Fill missing data and get all klines
all_klines = fill_missing_data(selected_csv_file)
# Send progress update
socketio.emit('history_progress', {'progress': 100}, to=sid)
logging.info(f"Finished data stream for SID={sid}. Sending final payload of {len(all_klines)} klines.")
socketio.emit('history_finished', {'klines_1m': all_klines}, to=sid)
except Exception as e:
logging.error(f"Error in stream_historical_data for SID={sid}: {e}", exc_info=True)
socketio.emit('history_error', {'message': str(e)}, to=sid)
# --- Real-time Data Listener ---
def binance_listener_thread():
"""
Connects to Binance, manages the 1-minute candle, and emits updates.
"""
global current_bar
async def listener():
global current_bar
while True:
try:
logging.info(f"Connecting to Binance WebSocket at {BINANCE_WS_URL}...")
async with websockets.connect(BINANCE_WS_URL) as websocket:
logging.info("Binance WebSocket connected successfully.")
while True:
message = await websocket.recv()
trade = json.loads(message)
price = float(trade['p'])
trade_time_s = trade['T'] // 1000
candle_timestamp = trade_time_s - (trade_time_s % 60)
if not current_bar or candle_timestamp > current_bar.get("time", 0):
if current_bar:
# The previous candle is now closed, emit it and save to CSV
logging.info(f"Candle closed at {current_bar['close']}. Emitting 'candle_closed' event.")
socketio.emit('candle_closed', current_bar)
# Append to selected CSV file
if selected_csv_file:
append_to_csv(selected_csv_file, current_bar)
current_bar = {"time": candle_timestamp, "open": price, "high": price, "low": price, "close": price}
else:
current_bar['high'] = max(current_bar.get('high', price), price)
current_bar['low'] = min(current_bar.get('low', price), price)
current_bar['close'] = price
# Emit the live, updating candle for visual feedback
socketio.emit('candle_update', current_bar)
except Exception as e:
logging.error(f"Binance listener error: {e}. Reconnecting...")
await asyncio.sleep(RESTART_TIMEOUT_S)
asyncio.run(listener())
# --- SocketIO Event Handlers ---
@socketio.on('connect')
def handle_connect():
global app_initialized
logging.info(f"Client connected: IP={request.remote_addr}, SID={request.sid}")
with app_init_lock:
if not app_initialized:
logging.info("--- Initializing Application ---")
socketio.start_background_task(binance_listener_thread)
app_initialized = True
socketio.start_background_task(target=stream_historical_data, sid=request.sid)
@socketio.on('get_csv_files')
def handle_get_csv_files():
"""Send available CSV files to client."""
logging.info(f"Received get_csv_files request from SID={request.sid}")
csv_files = get_available_csv_files()
default_file = get_default_csv_file()
logging.info(f"Sending CSV files list: {len(csv_files)} files, default: {default_file}")
socketio.emit('csv_files_list', {
'files': csv_files,
'selected': default_file
})
@socketio.on('select_csv_file')
def handle_select_csv_file(data):
"""Handle CSV file selection by user."""
global selected_csv_file
logging.info(f"Received select_csv_file request from SID={request.sid} with data: {data}")
filename = data.get('filename')
if filename:
csv_files = get_available_csv_files()
valid_files = [f['filename'] for f in csv_files]
if filename in valid_files:
selected_csv_file = filename
save_user_preference(filename)
logging.info(f"User selected CSV file: {filename}")
# Stream new historical data
socketio.start_background_task(target=stream_historical_data, sid=request.sid)
else:
logging.error(f"Invalid CSV file selected: {filename}")
socketio.emit('error', {'message': f'Invalid CSV file: {filename}'})
# --- Flask Routes ---
@app.route('/')
def index():
return render_template('index.html', symbol=SYMBOL)
# --- Main Application Execution ---
if __name__ == '__main__':
logging.info("Starting Flask-SocketIO server...")
socketio.run(app, host='0.0.0.0', port=5000, allow_unsafe_werkzeug=True, debug=False)