Files
hyper/resampler.py
2025-10-13 13:26:34 +02:00

190 lines
7.2 KiB
Python

import argparse
import logging
import os
import sys
import sqlite3
import pandas as pd
import json
from datetime import datetime, timezone
# Assuming logging_utils.py is in the same directory
from logging_utils import setup_logging
class Resampler:
"""
Reads 1-minute candle data directly from the SQLite database, resamples
it to various timeframes, and stores the results back in the database.
"""
def __init__(self, log_level: str, coins: list, timeframes: dict):
setup_logging(log_level, 'Resampler')
self.db_path = os.path.join("_data", "market_data.db")
self.status_file_path = os.path.join("_data", "resampling_status.json")
self.coins_to_process = coins
self.timeframes = timeframes
self.aggregation_logic = {
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum',
'number_of_trades': 'sum'
}
self.resampling_status = self._load_existing_status()
def _load_existing_status(self) -> dict:
"""Loads the existing status file if it exists, otherwise returns an empty dict."""
if os.path.exists(self.status_file_path):
try:
with open(self.status_file_path, 'r', encoding='utf-8') as f:
logging.info(f"Loading existing status from '{self.status_file_path}'")
return json.load(f)
except (IOError, json.JSONDecodeError) as e:
logging.warning(f"Could not read existing status file. Starting fresh. Error: {e}")
return {}
def run(self):
"""
Main execution function to process all configured coins and update the database.
"""
if not os.path.exists(self.db_path):
logging.error(f"Database file '{self.db_path}' not found. "
"Please run the data fetcher script first.")
sys.exit(1)
with sqlite3.connect(self.db_path) as conn:
conn.execute("PRAGMA journal_mode=WAL;")
logging.info(f"Processing {len(self.coins_to_process)} coins: {', '.join(self.coins_to_process)}")
for coin in self.coins_to_process:
source_table_name = f"{coin}_1m"
logging.info(f"--- Processing {coin} ---")
try:
df = pd.read_sql(f'SELECT * FROM "{source_table_name}"', conn)
if df.empty:
logging.warning(f"Source table '{source_table_name}' is empty or does not exist. Skipping.")
continue
df['datetime_utc'] = pd.to_datetime(df['datetime_utc'])
df.set_index('datetime_utc', inplace=True)
for tf_name, tf_code in self.timeframes.items():
logging.info(f" Resampling to {tf_name}...")
resampled_df = df.resample(tf_code).agg(self.aggregation_logic)
resampled_df.dropna(how='all', inplace=True)
if coin not in self.resampling_status:
self.resampling_status[coin] = {}
if not resampled_df.empty:
target_table_name = f"{coin}_{tf_name}"
resampled_df.to_sql(
target_table_name,
conn,
if_exists='replace',
index=True
)
last_timestamp = resampled_df.index[-1].strftime('%Y-%m-%d %H:%M:%S')
num_candles = len(resampled_df)
self.resampling_status[coin][tf_name] = {
"last_candle_utc": last_timestamp,
"total_candles": num_candles
}
else:
logging.info(f" -> No data to save for '{coin}_{tf_name}'.")
self.resampling_status[coin][tf_name] = {
"last_candle_utc": "N/A",
"total_candles": 0
}
except pd.io.sql.DatabaseError as e:
logging.warning(f"Could not read source table '{source_table_name}': {e}")
except Exception as e:
logging.error(f"Failed to process coin '{coin}': {e}")
self._save_status()
logging.info("--- Resampling process complete ---")
def _save_status(self):
"""Saves the final resampling status to a JSON file."""
if not self.resampling_status:
logging.warning("No data was resampled, skipping status file creation.")
return
self.resampling_status['last_completed_utc'] = datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')
try:
with open(self.status_file_path, 'w', encoding='utf-8') as f:
json.dump(self.resampling_status, f, indent=4, sort_keys=True)
logging.info(f"Successfully saved resampling status to '{self.status_file_path}'")
except IOError as e:
logging.error(f"Failed to write resampling status file: {e}")
def parse_timeframes(tf_strings: list) -> dict:
"""Converts a list of timeframe strings into a dictionary for pandas."""
tf_map = {}
for tf_str in tf_strings:
numeric_part = ''.join(filter(str.isdigit, tf_str))
unit = ''.join(filter(str.isalpha, tf_str)).lower()
code = ''
if unit == 'm':
code = f"{numeric_part}min"
elif unit == 'w':
# --- FIX: Use uppercase 'W' for weeks to avoid deprecation warning ---
code = f"{numeric_part}W"
elif unit in ['h', 'd']:
code = f"{numeric_part}{unit}"
else:
code = tf_str
logging.warning(f"Unrecognized timeframe unit in '{tf_str}'. Using as-is.")
tf_map[tf_str] = code
return tf_map
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Resample 1-minute candle data from SQLite to other timeframes.")
parser.add_argument(
"--coins",
nargs='+',
default=["BTC", "ETH", "SOL", "BNB", "HYPE", "ASTER", "ZEC", "PUMP", "SUI"],
help="List of coins to process."
)
parser.add_argument(
"--timeframes",
nargs='+',
default=['4m', '5m', '15m', '30m', '37m', '148m', '4h', '12h', '1d', '1w'],
help="List of timeframes to generate (e.g., 5m 1h 1d)."
)
parser.add_argument(
"--timeframe",
dest="timeframes",
nargs='+',
help=argparse.SUPPRESS
)
parser.add_argument(
"--log-level",
default="normal",
choices=['off', 'normal', 'debug'],
help="Set the logging level for the script."
)
args = parser.parse_args()
timeframes_dict = parse_timeframes(args.timeframes)
resampler = Resampler(
log_level=args.log_level,
coins=args.coins,
timeframes=timeframes_dict
)
resampler.run()