updated fast orders

This commit is contained in:
2025-11-02 19:56:40 +01:00
parent 93363750ae
commit d650bb5fe2
6 changed files with 932 additions and 354 deletions

165
base_strategy.py Normal file
View File

@ -0,0 +1,165 @@
from abc import ABC, abstractmethod
import pandas as pd
import json
import os
import logging
from datetime import datetime, timezone
import sqlite3
import multiprocessing
import time
from logging_utils import setup_logging
from hyperliquid.info import Info
from hyperliquid.utils import constants
class BaseStrategy(ABC):
"""
An abstract base class that defines the blueprint for all trading strategies.
It provides common functionality like loading data, saving status, and state management.
"""
def __init__(self, strategy_name: str, params: dict, trade_signal_queue: multiprocessing.Queue = None, shared_status: dict = None):
self.strategy_name = strategy_name
self.params = params
self.trade_signal_queue = trade_signal_queue
# Optional multiprocessing.Manager().dict() to hold live status (avoids file IO)
self.shared_status = shared_status
self.coin = params.get("coin", "N/A")
self.timeframe = params.get("timeframe", "N/A")
self.db_path = os.path.join("_data", "market_data.db")
self.status_file_path = os.path.join("_data", f"strategy_status_{self.strategy_name}.json")
self.current_signal = "INIT"
self.last_signal_change_utc = None
self.signal_price = None
# Note: Logging is set up by the run_strategy function
def load_data(self) -> pd.DataFrame:
"""Loads historical data for the configured coin and timeframe."""
table_name = f"{self.coin}_{self.timeframe}"
periods = [v for k, v in self.params.items() if 'period' in k or '_ma' in k or 'slow' in k or 'fast' in k]
limit = max(periods) + 50 if periods else 500
try:
with sqlite3.connect(f"file:{self.db_path}?mode=ro", uri=True) as conn:
query = f'SELECT * FROM "{table_name}" ORDER BY datetime_utc DESC LIMIT {limit}'
df = pd.read_sql(query, conn, parse_dates=['datetime_utc'])
if df.empty: return pd.DataFrame()
df.set_index('datetime_utc', inplace=True)
df.sort_index(inplace=True)
return df
except Exception as e:
logging.error(f"Failed to load data from table '{table_name}': {e}")
return pd.DataFrame()
@abstractmethod
def calculate_signals(self, df: pd.DataFrame) -> pd.DataFrame:
"""The core logic of the strategy. Must be implemented by child classes."""
pass
def calculate_signals_and_state(self, df: pd.DataFrame) -> bool:
"""
A wrapper that calls the strategy's signal calculation, determines
the last signal change, and returns True if the signal has changed.
"""
df_with_signals = self.calculate_signals(df)
df_with_signals.dropna(inplace=True)
if df_with_signals.empty:
return False
df_with_signals['position_change'] = df_with_signals['signal'].diff()
last_signal_int = df_with_signals['signal'].iloc[-1]
new_signal_str = "HOLD"
if last_signal_int == 1: new_signal_str = "BUY"
elif last_signal_int == -1: new_signal_str = "SELL"
signal_changed = False
if self.current_signal == "INIT":
if new_signal_str == "BUY": self.current_signal = "INIT_BUY"
elif new_signal_str == "SELL": self.current_signal = "INIT_SELL"
else: self.current_signal = "HOLD"
signal_changed = True
elif new_signal_str != self.current_signal:
self.current_signal = new_signal_str
signal_changed = True
if signal_changed:
last_change_series = df_with_signals[df_with_signals['position_change'] != 0]
if not last_change_series.empty:
last_change_row = last_change_series.iloc[-1]
self.last_signal_change_utc = last_change_row.name.tz_localize('UTC').isoformat()
self.signal_price = last_change_row['close']
return signal_changed
def _save_status(self):
"""Saves the current strategy state to its JSON file."""
status = {
"strategy_name": self.strategy_name,
"current_signal": self.current_signal,
"last_signal_change_utc": self.last_signal_change_utc,
"signal_price": self.signal_price,
"last_checked_utc": datetime.now(timezone.utc).isoformat()
}
# If a shared status dict is provided (Manager.dict()), update it instead of writing files
try:
if self.shared_status is not None:
try:
# store the status under the strategy name for easy lookup
self.shared_status[self.strategy_name] = status
except Exception:
# Manager proxies may not accept nested mutable objects consistently; assign a copy
self.shared_status[self.strategy_name] = dict(status)
else:
with open(self.status_file_path, 'w', encoding='utf-8') as f:
json.dump(status, f, indent=4)
except IOError as e:
logging.error(f"Failed to write status file for {self.strategy_name}: {e}")
def run_polling_loop(self):
"""
The default execution loop for polling-based strategies (e.g., SMAs).
"""
while True:
df = self.load_data()
if df.empty:
logging.warning("No data loaded. Waiting 1 minute...")
time.sleep(60)
continue
signal_changed = self.calculate_signals_and_state(df.copy())
self._save_status()
if signal_changed or self.current_signal == "INIT_BUY" or self.current_signal == "INIT_SELL":
logging.warning(f"New signal detected: {self.current_signal}")
self.trade_signal_queue.put({
"strategy_name": self.strategy_name,
"signal": self.current_signal,
"coin": self.coin,
"signal_price": self.signal_price,
"config": {"agent": self.params.get("agent"), "parameters": self.params}
})
if self.current_signal == "INIT_BUY": self.current_signal = "BUY"
if self.current_signal == "INIT_SELL": self.current_signal = "SELL"
logging.info(f"Current Signal: {self.current_signal}")
time.sleep(60)
def run_event_loop(self):
"""
A placeholder for event-driven (WebSocket) strategies.
Child classes must override this.
"""
logging.error("run_event_loop() is not implemented for this strategy.")
time.sleep(3600) # Sleep for an hour to prevent rapid error loops
def on_fill_message(self, message):
"""
Placeholder for the WebSocket callback.
Child classes must override this.
"""
pass