strategy status table
This commit is contained in:
188
strategy_sma_cross.py
Normal file
188
strategy_sma_cross.py
Normal file
@ -0,0 +1,188 @@
|
||||
import argparse
|
||||
import logging
|
||||
import sys
|
||||
import time
|
||||
import pandas as pd
|
||||
import sqlite3
|
||||
import json
|
||||
import os
|
||||
from datetime import datetime, timezone, timedelta
|
||||
|
||||
from logging_utils import setup_logging
|
||||
|
||||
class SmaCrossStrategy:
|
||||
"""
|
||||
A strategy that generates BUY/SELL signals based on the price crossing
|
||||
a Simple Moving Average (SMA). It runs its logic precisely once per candle.
|
||||
"""
|
||||
|
||||
def __init__(self, strategy_name: str, params: dict, log_level: str):
|
||||
self.strategy_name = strategy_name
|
||||
self.params = params
|
||||
self.coin = params.get("coin", "N/A")
|
||||
self.timeframe = params.get("timeframe", "N/A")
|
||||
self.sma_period = params.get("sma_period", 20) # Default to 20 if not specified
|
||||
|
||||
self.db_path = os.path.join("_data", "market_data.db")
|
||||
self.status_file_path = os.path.join("_data", f"strategy_status_{self.strategy_name}.json")
|
||||
|
||||
# Strategy state variables
|
||||
self.current_signal = "INIT"
|
||||
self.last_signal_change_utc = None
|
||||
self.signal_price = None
|
||||
self.indicator_value = None
|
||||
|
||||
setup_logging(log_level, f"Strategy-{self.strategy_name}")
|
||||
logging.info(f"Initializing SMA Cross strategy with parameters:")
|
||||
for key, value in self.params.items():
|
||||
logging.info(f" - {key}: {value}")
|
||||
|
||||
def load_data(self) -> pd.DataFrame:
|
||||
"""Loads historical data, ensuring enough for SMA calculation."""
|
||||
table_name = f"{self.coin}_{self.timeframe}"
|
||||
# We need at least sma_period + 1 rows to check the previous state
|
||||
limit = self.sma_period + 50
|
||||
|
||||
try:
|
||||
with sqlite3.connect(f"file:{self.db_path}?mode=ro", uri=True) as conn:
|
||||
query = f'SELECT * FROM "{table_name}" ORDER BY datetime_utc DESC LIMIT {limit}'
|
||||
df = pd.read_sql(query, conn)
|
||||
if df.empty: return pd.DataFrame()
|
||||
|
||||
df['datetime_utc'] = pd.to_datetime(df['datetime_utc'])
|
||||
df.set_index('datetime_utc', inplace=True)
|
||||
df.sort_index(inplace=True)
|
||||
return df
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to load data from table '{table_name}': {e}")
|
||||
return pd.DataFrame()
|
||||
|
||||
def _calculate_signals(self, data: pd.DataFrame):
|
||||
"""
|
||||
Analyzes historical data to find the last SMA crossover event.
|
||||
"""
|
||||
if len(data) < self.sma_period + 1:
|
||||
self.current_signal = "INSUFFICIENT DATA"
|
||||
return
|
||||
|
||||
# Calculate SMA
|
||||
data['sma'] = data['close'].rolling(window=self.sma_period).mean()
|
||||
self.indicator_value = data['sma'].iloc[-1]
|
||||
|
||||
# Determine position relative to SMA: 1 for above (long), -1 for below (short)
|
||||
data['position'] = 0
|
||||
data.loc[data['close'] > data['sma'], 'position'] = 1
|
||||
data.loc[data['close'] < data['sma'], 'position'] = -1
|
||||
|
||||
# A crossover is when the position on this candle is different from the last
|
||||
data['crossover'] = data['position'].diff()
|
||||
|
||||
# Get the latest signal based on the last position
|
||||
last_position = data['position'].iloc[-1]
|
||||
if last_position == 1: self.current_signal = "BUY"
|
||||
elif last_position == -1: self.current_signal = "SELL"
|
||||
else: self.current_signal = "HOLD"
|
||||
|
||||
# Find the most recent crossover event in the historical data
|
||||
last_cross_series = data[data['crossover'] != 0]
|
||||
if not last_cross_series.empty:
|
||||
last_cross_row = last_cross_series.iloc[-1]
|
||||
|
||||
self.last_signal_change_utc = last_cross_row.name.tz_localize('UTC').isoformat()
|
||||
self.signal_price = last_cross_row['close']
|
||||
|
||||
# Refine the signal to be the one *at the time of the cross*
|
||||
if last_cross_row['position'] == 1: self.current_signal = "BUY"
|
||||
elif last_cross_row['position'] == -1: self.current_signal = "SELL"
|
||||
else:
|
||||
# If no crosses in history, the signal has been consistent
|
||||
self.last_signal_change_utc = data.index[0].tz_localize('UTC').isoformat()
|
||||
self.signal_price = data['close'].iloc[0]
|
||||
|
||||
def _save_status(self):
|
||||
"""Saves the current strategy state to its JSON file."""
|
||||
status = {
|
||||
"strategy_name": self.strategy_name,
|
||||
"current_signal": self.current_signal,
|
||||
"last_signal_change_utc": self.last_signal_change_utc,
|
||||
"signal_price": self.signal_price,
|
||||
"last_checked_utc": datetime.now(timezone.utc).isoformat()
|
||||
}
|
||||
try:
|
||||
with open(self.status_file_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(status, f, indent=4)
|
||||
except IOError as e:
|
||||
logging.error(f"Failed to write status file: {e}")
|
||||
|
||||
def get_sleep_duration(self) -> int:
|
||||
"""Calculates seconds to sleep until the next full candle closes."""
|
||||
tf_value = int(''.join(filter(str.isdigit, self.timeframe)))
|
||||
tf_unit = ''.join(filter(str.isalpha, self.timeframe))
|
||||
|
||||
if tf_unit == 'm': interval_seconds = tf_value * 60
|
||||
elif tf_unit == 'h': interval_seconds = tf_value * 3600
|
||||
elif tf_unit == 'd': interval_seconds = tf_value * 86400
|
||||
else: return 60 # Default to 1 minute if unknown
|
||||
|
||||
now = datetime.now(timezone.utc)
|
||||
timestamp = now.timestamp()
|
||||
|
||||
# Calculate the timestamp of the *next* candle close
|
||||
next_candle_ts = ((timestamp // interval_seconds) + 1) * interval_seconds
|
||||
|
||||
# Add a small buffer (e.g., 5 seconds) to ensure the candle data is available
|
||||
sleep_seconds = (next_candle_ts - timestamp) + 5
|
||||
|
||||
logging.info(f"Next candle closes at {datetime.fromtimestamp(next_candle_ts, tz=timezone.utc)}. "
|
||||
f"Sleeping for {sleep_seconds:.2f} seconds.")
|
||||
return sleep_seconds
|
||||
|
||||
def run_logic(self):
|
||||
"""Main loop: loads data, calculates signals, saves status, and sleeps."""
|
||||
logging.info(f"Starting SMA Cross logic loop for {self.coin} on {self.timeframe} timeframe.")
|
||||
while True:
|
||||
data = self.load_data()
|
||||
if data.empty:
|
||||
logging.warning("No data loaded. Waiting 1 minute before retrying...")
|
||||
self.current_signal = "NO DATA"
|
||||
self._save_status()
|
||||
time.sleep(60)
|
||||
continue
|
||||
|
||||
self._calculate_signals(data)
|
||||
self._save_status()
|
||||
|
||||
# --- ADDED: More detailed logging for the current cycle ---
|
||||
last_close = data['close'].iloc[-1]
|
||||
indicator_val_str = f"{self.indicator_value:.4f}" if self.indicator_value is not None else "N/A"
|
||||
logging.info(
|
||||
f"Signal: {self.current_signal} | "
|
||||
f"Price: {last_close:.4f} | "
|
||||
f"SMA({self.sma_period}): {indicator_val_str}"
|
||||
)
|
||||
|
||||
sleep_time = self.get_sleep_duration()
|
||||
time.sleep(sleep_time)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run an SMA Crossover trading strategy.")
|
||||
parser.add_argument("--name", required=True, help="The name of the strategy instance from the config.")
|
||||
parser.add_argument("--params", required=True, help="A JSON string of the strategy's parameters.")
|
||||
parser.add_argument("--log-level", default="normal", choices=['off', 'normal', 'debug'])
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
strategy_params = json.loads(args.params)
|
||||
strategy = SmaCrossStrategy(
|
||||
strategy_name=args.name,
|
||||
params=strategy_params,
|
||||
log_level=args.log_level
|
||||
)
|
||||
strategy.run_logic()
|
||||
except KeyboardInterrupt:
|
||||
logging.info("Strategy process stopped.")
|
||||
except Exception as e:
|
||||
logging.error(f"A critical error occurred: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
Reference in New Issue
Block a user