not ideal but working bat charging

This commit is contained in:
2026-02-03 15:05:29 +01:00
parent 5b39f80862
commit a7a2da2eb2
11 changed files with 1241 additions and 37 deletions

View File

@ -51,7 +51,7 @@ class PstrykAPIClient:
if not self._translations_loaded:
try:
self._translations = await async_get_translations(
self.hass, self.hass.config.language, DOMAIN, ["debug"]
self.hass, self.hass.config.language, DOMAIN
)
self._translations_loaded = True
# Debug: log sample keys to understand the format

View File

@ -8,6 +8,7 @@ from homeassistant.core import callback
from homeassistant.components import mqtt
from homeassistant.exceptions import HomeAssistantError
from homeassistant.helpers.aiohttp_client import async_get_clientsession
from homeassistant.helpers import selector
from .const import (
DOMAIN,
API_URL,
@ -25,7 +26,34 @@ from .const import (
MIN_RETRY_ATTEMPTS,
MAX_RETRY_ATTEMPTS,
MIN_RETRY_DELAY,
MAX_RETRY_DELAY
MAX_RETRY_DELAY,
# Battery recommendation constants
CONF_BATTERY_ENABLED,
CONF_BATTERY_SOC_ENTITY,
CONF_BATTERY_CAPACITY,
CONF_BATTERY_CHARGE_RATE,
CONF_BATTERY_DISCHARGE_RATE,
CONF_BATTERY_MIN_SOC,
CONF_BATTERY_CHARGE_HOURS,
CONF_BATTERY_DISCHARGE_MULTIPLIER,
DEFAULT_BATTERY_CAPACITY,
DEFAULT_BATTERY_CHARGE_RATE,
DEFAULT_BATTERY_DISCHARGE_RATE,
DEFAULT_BATTERY_MIN_SOC,
DEFAULT_BATTERY_CHARGE_HOURS,
DEFAULT_BATTERY_DISCHARGE_MULTIPLIER,
MIN_BATTERY_CAPACITY,
MAX_BATTERY_CAPACITY,
MIN_BATTERY_CHARGE_RATE,
MAX_BATTERY_CHARGE_RATE,
MIN_BATTERY_DISCHARGE_RATE,
MAX_BATTERY_DISCHARGE_RATE,
MIN_BATTERY_MIN_SOC,
MAX_BATTERY_MIN_SOC,
MIN_BATTERY_CHARGE_HOURS,
MAX_BATTERY_CHARGE_HOURS,
MIN_BATTERY_DISCHARGE_MULTIPLIER,
MAX_BATTERY_DISCHARGE_MULTIPLIER,
)
class MQTTNotConfiguredError(HomeAssistantError):
@ -261,6 +289,34 @@ class PstrykOptionsFlowHandler(config_entries.OptionsFlow):
vol.All(vol.Coerce(int), vol.Range(min=MIN_RETRY_DELAY, max=MAX_RETRY_DELAY)),
})
# Battery Recommendation Configuration
schema.update({
vol.Optional(CONF_BATTERY_ENABLED, default=self.config_entry.options.get(
CONF_BATTERY_ENABLED, False)): bool,
vol.Optional(CONF_BATTERY_SOC_ENTITY, default=self.config_entry.options.get(
CONF_BATTERY_SOC_ENTITY, "")): selector.EntitySelector(
selector.EntitySelectorConfig(domain="sensor")
),
vol.Optional(CONF_BATTERY_CAPACITY, default=self.config_entry.options.get(
CONF_BATTERY_CAPACITY, DEFAULT_BATTERY_CAPACITY)):
vol.All(vol.Coerce(int), vol.Range(min=MIN_BATTERY_CAPACITY, max=MAX_BATTERY_CAPACITY)),
vol.Optional(CONF_BATTERY_CHARGE_RATE, default=self.config_entry.options.get(
CONF_BATTERY_CHARGE_RATE, DEFAULT_BATTERY_CHARGE_RATE)):
vol.All(vol.Coerce(int), vol.Range(min=MIN_BATTERY_CHARGE_RATE, max=MAX_BATTERY_CHARGE_RATE)),
vol.Optional(CONF_BATTERY_DISCHARGE_RATE, default=self.config_entry.options.get(
CONF_BATTERY_DISCHARGE_RATE, DEFAULT_BATTERY_DISCHARGE_RATE)):
vol.All(vol.Coerce(int), vol.Range(min=MIN_BATTERY_DISCHARGE_RATE, max=MAX_BATTERY_DISCHARGE_RATE)),
vol.Optional(CONF_BATTERY_MIN_SOC, default=self.config_entry.options.get(
CONF_BATTERY_MIN_SOC, DEFAULT_BATTERY_MIN_SOC)):
vol.All(vol.Coerce(int), vol.Range(min=MIN_BATTERY_MIN_SOC, max=MAX_BATTERY_MIN_SOC)),
vol.Optional(CONF_BATTERY_CHARGE_HOURS, default=self.config_entry.options.get(
CONF_BATTERY_CHARGE_HOURS, DEFAULT_BATTERY_CHARGE_HOURS)):
vol.All(vol.Coerce(int), vol.Range(min=MIN_BATTERY_CHARGE_HOURS, max=MAX_BATTERY_CHARGE_HOURS)),
vol.Optional(CONF_BATTERY_DISCHARGE_MULTIPLIER, default=self.config_entry.options.get(
CONF_BATTERY_DISCHARGE_MULTIPLIER, DEFAULT_BATTERY_DISCHARGE_MULTIPLIER)):
vol.All(vol.Coerce(float), vol.Range(min=MIN_BATTERY_DISCHARGE_MULTIPLIER, max=MAX_BATTERY_DISCHARGE_MULTIPLIER)),
})
# Add description with section information
description_text = "Configure your energy price monitoring settings"
if mqtt_enabled:

View File

@ -2,7 +2,7 @@
DOMAIN = "pstryk"
API_URL = "https://api.pstryk.pl/integrations/"
API_TIMEOUT = 60
API_TIMEOUT = 30 # Reduced from 60 to allow faster startup
BUY_ENDPOINT = "pricing/?resolution=hour&window_start={start}&window_end={end}"
SELL_ENDPOINT = "prosumer-pricing/?resolution=hour&window_start={start}&window_end={end}"
@ -32,3 +32,33 @@ MIN_RETRY_ATTEMPTS = 1
MAX_RETRY_ATTEMPTS = 10
MIN_RETRY_DELAY = 5 # seconds
MAX_RETRY_DELAY = 300 # seconds (5 minutes)
# Battery recommendation sensor constants
CONF_BATTERY_ENABLED = "battery_enabled"
CONF_BATTERY_SOC_ENTITY = "battery_soc_entity"
CONF_BATTERY_CAPACITY = "battery_capacity"
CONF_BATTERY_CHARGE_RATE = "battery_charge_rate"
CONF_BATTERY_DISCHARGE_RATE = "battery_discharge_rate"
CONF_BATTERY_MIN_SOC = "battery_min_soc"
CONF_BATTERY_CHARGE_HOURS = "battery_charge_hours"
CONF_BATTERY_DISCHARGE_MULTIPLIER = "battery_discharge_multiplier"
DEFAULT_BATTERY_CAPACITY = 15 # kWh
DEFAULT_BATTERY_CHARGE_RATE = 28 # %/h
DEFAULT_BATTERY_DISCHARGE_RATE = 10 # %/h
DEFAULT_BATTERY_MIN_SOC = 20 # %
DEFAULT_BATTERY_CHARGE_HOURS = 6 # number of cheapest hours to charge
DEFAULT_BATTERY_DISCHARGE_MULTIPLIER = 1.3 # discharge when price >= avg_charge_price * multiplier
MIN_BATTERY_CAPACITY = 1
MAX_BATTERY_CAPACITY = 100
MIN_BATTERY_CHARGE_RATE = 5
MAX_BATTERY_CHARGE_RATE = 100
MIN_BATTERY_DISCHARGE_RATE = 5
MAX_BATTERY_DISCHARGE_RATE = 50
MIN_BATTERY_MIN_SOC = 5
MAX_BATTERY_MIN_SOC = 50
MIN_BATTERY_CHARGE_HOURS = 3
MAX_BATTERY_CHARGE_HOURS = 12
MIN_BATTERY_DISCHARGE_MULTIPLIER = 1.1
MAX_BATTERY_DISCHARGE_MULTIPLIER = 2.0

View File

@ -46,7 +46,7 @@ class PstrykMqttPublisher:
# Load translations
try:
self._translations = await async_get_translations(
self.hass, self.hass.config.language, DOMAIN, ["mqtt"]
self.hass, self.hass.config.language, DOMAIN
)
except Exception as ex:
_LOGGER.warning("Failed to load translations for MQTT publisher: %s", ex)
@ -202,7 +202,8 @@ class PstrykMqttPublisher:
last_time = formatted_prices[-1]["start"]
_LOGGER.debug(f"Formatted {len(formatted_prices)} prices for MQTT from {first_time} to {last_time}")
# Verify we have complete days
# Verify we have complete days (debug only, not critical)
today = dt_util.now().strftime("%Y-%m-%d")
hours_by_date = {}
for fp in formatted_prices:
date_part = fp["start"][:10] # YYYY-MM-DD
@ -212,7 +213,15 @@ class PstrykMqttPublisher:
for date, hours in hours_by_date.items():
if hours != 24:
_LOGGER.warning(f"Incomplete day {date}: only {hours} hours instead of 24")
# Only log as debug - incomplete days are normal for past/future data
# Past days get cleaned up, future days may not be available yet
if date < today:
_LOGGER.debug(f"Past day {date}: {hours} hours (old data being cleaned)")
elif date == today and hours >= 20:
# Today with 20+ hours is acceptable (may be missing 1-2 hours at edges)
_LOGGER.debug(f"Today {date}: {hours}/24 hours (acceptable)")
else:
_LOGGER.debug(f"Incomplete day {date}: {hours}/24 hours")
else:
_LOGGER.warning("No prices formatted for MQTT")

View File

@ -1,12 +1,14 @@
"""Sensor platform for Pstryk Energy integration."""
import logging
import asyncio
import math
from datetime import timedelta
from homeassistant.config_entries import ConfigEntry
from homeassistant.core import HomeAssistant, callback
from homeassistant.components.sensor import SensorEntity, SensorStateClass, SensorDeviceClass
from homeassistant.helpers.update_coordinator import CoordinatorEntity
from homeassistant.helpers.restore_state import RestoreEntity
from homeassistant.helpers.event import async_track_state_change_event
from homeassistant.util import dt as dt_util
from .update_coordinator import PstrykDataUpdateCoordinator
from .energy_cost_coordinator import PstrykCostDataUpdateCoordinator
@ -17,7 +19,22 @@ from .const import (
CONF_RETRY_ATTEMPTS,
CONF_RETRY_DELAY,
DEFAULT_RETRY_ATTEMPTS,
DEFAULT_RETRY_DELAY
DEFAULT_RETRY_DELAY,
# Battery recommendation constants
CONF_BATTERY_ENABLED,
CONF_BATTERY_SOC_ENTITY,
CONF_BATTERY_CAPACITY,
CONF_BATTERY_CHARGE_RATE,
CONF_BATTERY_DISCHARGE_RATE,
CONF_BATTERY_MIN_SOC,
CONF_BATTERY_CHARGE_HOURS,
CONF_BATTERY_DISCHARGE_MULTIPLIER,
DEFAULT_BATTERY_CAPACITY,
DEFAULT_BATTERY_CHARGE_RATE,
DEFAULT_BATTERY_DISCHARGE_RATE,
DEFAULT_BATTERY_MIN_SOC,
DEFAULT_BATTERY_CHARGE_HOURS,
DEFAULT_BATTERY_DISCHARGE_MULTIPLIER,
)
from homeassistant.helpers.translation import async_get_translations
@ -26,28 +43,29 @@ _LOGGER = logging.getLogger(__name__)
# Store translations globally to avoid reloading for each sensor
_TRANSLATIONS_CACHE = {}
# Cache for manifest version
# Cache for manifest version - load at module import time (outside event loop)
_VERSION_CACHE = None
def get_integration_version(hass: HomeAssistant) -> str:
"""Get integration version from manifest.json."""
global _VERSION_CACHE
if _VERSION_CACHE is not None:
return _VERSION_CACHE
def _load_version_sync() -> str:
"""Load version synchronously at module import time."""
try:
import json
import os
manifest_path = os.path.join(os.path.dirname(__file__), "manifest.json")
with open(manifest_path, "r") as f:
manifest = json.load(f)
_VERSION_CACHE = manifest.get("version", "unknown")
return _VERSION_CACHE
except Exception as ex:
_LOGGER.warning("Failed to read version from manifest.json: %s", ex)
return manifest.get("version", "unknown")
except Exception:
return "unknown"
# Load version once at module import (not in event loop)
_VERSION_CACHE = _load_version_sync()
def get_integration_version(hass: HomeAssistant) -> str:
"""Get integration version from manifest.json."""
return _VERSION_CACHE
async def async_setup_entry(
hass: HomeAssistant,
@ -72,7 +90,7 @@ async def async_setup_entry(
if not _TRANSLATIONS_CACHE:
try:
_TRANSLATIONS_CACHE = await async_get_translations(
hass, hass.config.language, DOMAIN, ["entity", "debug"]
hass, hass.config.language, DOMAIN
)
except Exception as ex:
_LOGGER.warning("Failed to load translations: %s", ex)
@ -139,13 +157,21 @@ async def async_setup_entry(
_LOGGER.info("Starting quick initialization - loading price coordinators only")
async def safe_initial_fetch(coord, coord_type):
"""Safely fetch initial data for coordinator."""
"""Safely fetch initial data for coordinator with timeout."""
try:
data = await coord._async_update_data()
# Add timeout to prevent blocking startup
data = await asyncio.wait_for(
coord._async_update_data(),
timeout=20.0 # 20 seconds max per coordinator
)
coord.data = data
coord.last_update_success = True
_LOGGER.debug("Successfully initialized %s coordinator", coord_type)
return True
except asyncio.TimeoutError:
_LOGGER.warning("Timeout initializing %s coordinator - will retry later", coord_type)
coord.last_update_success = False
return False
except Exception as err:
_LOGGER.error("Failed initial fetch for %s coordinator: %s", coord_type, err)
coord.last_update_success = False
@ -161,11 +187,63 @@ async def async_setup_entry(
refresh_results = await asyncio.gather(*initial_refresh_tasks, return_exceptions=True)
# Track failed coordinators for quick retry
failed_coordinators = []
# Check results for price coordinators
for i, (coordinator, coordinator_type, key) in enumerate(price_coordinators):
if isinstance(refresh_results[i], Exception):
_LOGGER.error("Failed to initialize %s coordinator: %s",
coordinator_type, str(refresh_results[i]))
if isinstance(refresh_results[i], Exception) or refresh_results[i] is False:
_LOGGER.warning("Coordinator %s failed initial load - scheduling retry with backoff",
coordinator_type)
failed_coordinators.append((coordinator, coordinator_type))
# Schedule exponential backoff retry for failed coordinators
# Delays: 2, 4, 8, 16, 32 minutes (5 attempts)
if failed_coordinators:
async def exponential_backoff_retry():
"""Retry failed coordinators with exponential backoff."""
base_delay = 120 # 2 minutes
max_attempts = 5
for attempt in range(max_attempts):
delay = base_delay * (2 ** attempt) # 2, 4, 8, 16, 32 minutes
# Check if any coordinators still need retry
coords_to_retry = [
(c, t) for c, t in failed_coordinators
if not c.last_update_success
]
if not coords_to_retry:
_LOGGER.info("All coordinators recovered, stopping backoff retry")
return
_LOGGER.info(
"Backoff retry attempt %d/%d in %d seconds for %d coordinator(s)",
attempt + 1, max_attempts, delay, len(coords_to_retry)
)
await asyncio.sleep(delay)
for coord, coord_type in coords_to_retry:
if not coord.last_update_success:
_LOGGER.info("Retry attempt %d for %s coordinator", attempt + 1, coord_type)
try:
await coord.async_request_refresh()
if coord.last_update_success:
_LOGGER.info("%s coordinator recovered on attempt %d", coord_type, attempt + 1)
except Exception as e:
_LOGGER.warning("Retry attempt %d failed for %s: %s", attempt + 1, coord_type, e)
# Final check
still_failed = [t for c, t in failed_coordinators if not c.last_update_success]
if still_failed:
_LOGGER.error(
"Coordinators %s failed after %d retry attempts. Will use hourly schedule.",
still_failed, max_attempts
)
hass.async_create_task(exponential_backoff_retry())
# Store all coordinators and set up scheduling
buy_coord = None
@ -223,6 +301,24 @@ async def async_setup_entry(
cost_coordinator, period, entry.entry_id
))
# Create battery recommendation sensor if enabled
battery_enabled = entry.options.get(CONF_BATTERY_ENABLED, False)
if battery_enabled and buy_coord:
battery_sensor = PstrykBatteryRecommendationSensor(
coordinator=buy_coord,
entry_id=entry.entry_id,
soc_entity_id=entry.options.get(CONF_BATTERY_SOC_ENTITY, ""),
capacity=entry.options.get(CONF_BATTERY_CAPACITY, DEFAULT_BATTERY_CAPACITY),
charge_rate=entry.options.get(CONF_BATTERY_CHARGE_RATE, DEFAULT_BATTERY_CHARGE_RATE),
discharge_rate=entry.options.get(CONF_BATTERY_DISCHARGE_RATE, DEFAULT_BATTERY_DISCHARGE_RATE),
min_soc=entry.options.get(CONF_BATTERY_MIN_SOC, DEFAULT_BATTERY_MIN_SOC),
charge_hours_count=entry.options.get(CONF_BATTERY_CHARGE_HOURS, DEFAULT_BATTERY_CHARGE_HOURS),
discharge_multiplier=entry.options.get(CONF_BATTERY_DISCHARGE_MULTIPLIER, DEFAULT_BATTERY_DISCHARGE_MULTIPLIER),
)
remaining_entities.append(battery_sensor)
_LOGGER.info("Battery recommendation sensor enabled with SoC entity: %s",
entry.options.get(CONF_BATTERY_SOC_ENTITY, "not configured"))
# Register ALL sensors immediately:
# - Current price sensors (2) with data
# - Remaining sensors (15) as unavailable until cost coordinator loads
@ -258,7 +354,7 @@ async def async_setup_entry(
class PstrykPriceSensor(CoordinatorEntity, SensorEntity):
"""Combined price sensor with table data attributes."""
_attr_state_class = SensorStateClass.MEASUREMENT
# Note: state_class removed - MONETARY device_class doesn't support MEASUREMENT
def __init__(self, coordinator: PstrykDataUpdateCoordinator, price_type: str, top_count: int, worst_count: int, entry_id: str):
super().__init__(coordinator)
@ -711,6 +807,8 @@ class PstrykPriceSensor(CoordinatorEntity, SensorEntity):
avg_price_sunrise_sunset_key: None,
next_hour_key: None,
all_prices_key: [],
"all_prices": [],
"prices_today": [],
best_prices_key: [],
worst_prices_key: [],
best_count_key: self.top_count,
@ -723,6 +821,7 @@ class PstrykPriceSensor(CoordinatorEntity, SensorEntity):
next_hour_data = self._get_next_hour_price()
today = self.coordinator.data.get("prices_today", [])
all_prices_list = self.coordinator.data.get("prices", [])
is_cached = self.coordinator.data.get("is_cached", False)
# Calculate average price for remaining hours today (from current hour)
@ -757,13 +856,12 @@ class PstrykPriceSensor(CoordinatorEntity, SensorEntity):
avg_price_full_day_with_hours = f"{avg_price_key} /24"
# Check if tomorrow's prices are available (more robust check)
all_prices = self.coordinator.data.get("prices", [])
tomorrow = (now + timedelta(days=1)).strftime("%Y-%m-%d")
tomorrow_prices = []
# Only check for tomorrow prices if we have a reasonable amount of data
if len(all_prices) > 0:
tomorrow_prices = [p for p in all_prices if p.get("start", "").startswith(tomorrow)]
if len(all_prices_list) > 0:
tomorrow_prices = [p for p in all_prices_list if p.get("start", "").startswith(tomorrow)]
# Log what we found for debugging
if tomorrow_prices:
@ -795,6 +893,8 @@ class PstrykPriceSensor(CoordinatorEntity, SensorEntity):
avg_price_sunrise_sunset_key: avg_price_sunrise_sunset,
next_hour_key: next_hour_data,
all_prices_key: today,
"all_prices": all_prices_list,
"prices_today": today,
best_prices_key: sorted_prices["best"],
worst_prices_key: sorted_prices["worst"],
best_count_key: self.top_count,
@ -803,6 +903,7 @@ class PstrykPriceSensor(CoordinatorEntity, SensorEntity):
last_updated_key: now.strftime("%Y-%m-%d %H:%M:%S"),
using_cached_key: is_cached,
tomorrow_available_key: tomorrow_available,
"tomorrow_available": tomorrow_available,
mqtt_price_count_key: mqtt_price_count,
"mqtt_48h_mode": self.coordinator.mqtt_48h_mode
}
@ -815,7 +916,7 @@ class PstrykPriceSensor(CoordinatorEntity, SensorEntity):
class PstrykAveragePriceSensor(RestoreEntity, SensorEntity):
"""Average price sensor using weighted averages from API data."""
_attr_state_class = SensorStateClass.MEASUREMENT
# Note: state_class removed - MONETARY device_class doesn't support MEASUREMENT
def __init__(self, cost_coordinator: PstrykCostDataUpdateCoordinator,
price_coordinator: PstrykDataUpdateCoordinator,
@ -1160,3 +1261,632 @@ class PstrykFinancialBalanceSensor(CoordinatorEntity, SensorEntity):
def available(self) -> bool:
"""Return if entity is available."""
return self.coordinator.last_update_success and self.coordinator.data is not None
class PstrykBatteryRecommendationSensor(CoordinatorEntity, SensorEntity, RestoreEntity):
"""Battery charging recommendation sensor based on dynamic prices."""
# State values
STATE_CHARGE = "charge"
STATE_DISCHARGE = "discharge"
STATE_STANDBY = "standby"
def __init__(
self,
coordinator: PstrykDataUpdateCoordinator,
entry_id: str,
soc_entity_id: str,
capacity: int,
charge_rate: int,
discharge_rate: int,
min_soc: int,
charge_hours_count: int,
discharge_multiplier: float,
):
"""Initialize the battery recommendation sensor."""
super().__init__(coordinator)
self.entry_id = entry_id
self._soc_entity_id = soc_entity_id
self._capacity = capacity
self._charge_rate = charge_rate
self._discharge_rate = discharge_rate
self._min_soc = min_soc
self._charge_hours_count = charge_hours_count
self._discharge_multiplier = discharge_multiplier
self._attr_icon = "mdi:battery-clock"
self._unsub_soc_listener = None
self._stored_energy_price = 0.0 # Weighted average cost of energy in battery
async def async_added_to_hass(self) -> None:
"""Run when entity is added to hass."""
await super().async_added_to_hass()
# Restore state
last_state = await self.async_get_last_state()
if last_state:
try:
# Restore stored energy price if available
if "stored_energy_price" in last_state.attributes:
self._stored_energy_price = float(last_state.attributes["stored_energy_price"])
_LOGGER.debug("Restored stored energy price: %.4f PLN/kWh", self._stored_energy_price)
except (ValueError, TypeError):
_LOGGER.warning("Could not restore stored energy price")
# Subscribe to SoC entity state changes for immediate updates
if self._soc_entity_id:
@callback
def _async_soc_state_changed(event) -> None:
"""Handle SoC entity state changes."""
new_state = event.data.get("new_state")
old_state = event.data.get("old_state")
if new_state is None or new_state.state in ("unknown", "unavailable"):
return
# Update weighted average cost if SoC increased (Charging)
if old_state and old_state.state not in ("unknown", "unavailable"):
try:
old_soc = float(old_state.state)
new_soc = float(new_state.state)
if new_soc > old_soc:
self._update_weighted_cost(old_soc, new_soc)
except ValueError:
pass
_LOGGER.debug(
"SoC changed from %s to %s, triggering update",
old_state.state if old_state else "None",
new_state.state
)
# Schedule an update
self.async_write_ha_state()
self._unsub_soc_listener = async_track_state_change_event(
self.hass,
[self._soc_entity_id],
_async_soc_state_changed
)
_LOGGER.info(
"Battery recommendation sensor now listening to SoC changes from %s",
self._soc_entity_id
)
def _update_weighted_cost(self, old_soc: float, new_soc: float):
"""Calculate new weighted average cost when charging."""
# Get current price
current_price = self.coordinator.data.get("current")
if current_price is None:
return # Cannot calculate without price
# Calculate energy chunks
# Capacity is in kWh. SoC is %.
# Energy = (SoC / 100) * Capacity
energy_old = (old_soc / 100.0) * self._capacity
energy_added = ((new_soc - old_soc) / 100.0) * self._capacity
# If battery was empty OR if stored price is uninitialized (0.0), take new price as baseline
if energy_old <= 0.1 or self._stored_energy_price == 0.0:
self._stored_energy_price = current_price
else:
# Weighted Average:
# (Old_kWh * Old_Price) + (Added_kWh * Current_Price)
# ---------------------------------------------------
# (Old_kWh + Added_kWh)
total_value = (energy_old * self._stored_energy_price) + (energy_added * current_price)
total_energy = energy_old + energy_added
if total_energy > 0:
self._stored_energy_price = total_value / total_energy
_LOGGER.debug(
"Updated stored energy price: %.4f PLN/kWh (Added %.2f kWh @ %.2f)",
self._stored_energy_price, energy_added, current_price
)
async def async_will_remove_from_hass(self) -> None:
"""Run when entity is removed from hass."""
await super().async_will_remove_from_hass()
# Unsubscribe from SoC entity state changes
if self._unsub_soc_listener:
self._unsub_soc_listener()
self._unsub_soc_listener = None
_LOGGER.debug("Unsubscribed from SoC state changes")
@property
def name(self) -> str:
"""Return the name of the sensor."""
return "Pstryk Battery Recommendation"
@property
def unique_id(self) -> str:
"""Return unique ID."""
return f"{DOMAIN}_battery_recommendation"
@property
def device_info(self):
"""Return device information."""
return {
"identifiers": {(DOMAIN, "pstryk_energy")},
"name": "Pstryk Energy",
"manufacturer": "Pstryk",
"model": "Energy Price Monitor",
"sw_version": get_integration_version(self.hass),
}
def _get_current_soc(self) -> float | None:
"""Get current SoC from configured entity."""
if not self._soc_entity_id:
return None
state = self.hass.states.get(self._soc_entity_id)
if state is None or state.state in ("unknown", "unavailable"):
return None
try:
return float(state.state)
except (ValueError, TypeError):
_LOGGER.warning("Cannot parse SoC value from %s: %s", self._soc_entity_id, state.state)
return None
def _get_prices_with_hours(self) -> list[dict]:
"""Get prices with hour information from coordinator."""
if not self.coordinator.data:
return []
prices = self.coordinator.data.get("prices", [])
if not prices:
return []
result = []
for price_entry in prices:
try:
start_str = price_entry.get("start", "")
price = price_entry.get("price")
if not start_str or price is None:
continue
dt = dt_util.parse_datetime(start_str)
if dt:
dt_local = dt_util.as_local(dt)
result.append({
"hour": dt_local.hour,
"price": price,
"datetime": dt_local,
"date": dt_local.date()
})
except Exception as e:
_LOGGER.debug("Error parsing price entry: %s", e)
return result
def _calculate_recommendation(self) -> tuple[str, dict]:
"""Calculate battery recommendation based on prices and SoC."""
now = dt_util.now()
current_hour = now.hour
current_soc = self._get_current_soc()
prices = self._get_prices_with_hours()
# Default attributes
attrs = {
"current_price": None,
"current_soc": current_soc,
"stored_energy_price": round(self._stored_energy_price, 4),
"avg_charge_price": None,
"discharge_threshold": None,
"charge_hours": [],
"discharge_hours": [],
"standby_hours": [],
"soc_forecast": [],
"emergency_charge": False,
"pre_peak_charge": False,
"critical_hour": None,
"reason": "No data available",
"next_state_change": None,
"next_state": None,
"prices_horizon": "unknown",
"config": {
"charge_hours_count": self._charge_hours_count,
"discharge_multiplier": self._discharge_multiplier,
"min_soc": self._min_soc,
"charge_rate": self._charge_rate,
"discharge_rate": self._discharge_rate,
"capacity": self._capacity,
"soc_entity": self._soc_entity_id,
},
"last_updated": now.strftime("%Y-%m-%d %H:%M:%S"),
}
if not prices or len(prices) < 12:
return self.STATE_STANDBY, attrs
# Get today's prices only for hour classification
today = now.date()
today_prices = [p for p in prices if p["date"] == today]
if len(today_prices) < 12:
attrs["reason"] = f"Insufficient price data for today ({len(today_prices)} hours)"
return self.STATE_STANDBY, attrs
# ============================================================
# ENHANCED ALGORITHM: Multi-phase arbitrage detection
# ============================================================
# Instead of just picking N cheapest hours globally, we:
# 1. Find primary charge hours (night - cheapest globally)
# 2. Identify peaks (morning 7-10, evening 15-20)
# 3. Identify mid-day valley (11-14)
# 4. If mid-day valley is profitable vs evening peak, charge there too
# ============================================================
# Round-trip efficiency factor (20% losses = multiply by 1.25 to break even)
EFFICIENCY_FACTOR = 1.25
# Time block definitions
NIGHT_HOURS = set(range(0, 6)) # 00:00 - 05:59
MORNING_PEAK = set(range(6, 11)) # 06:00 - 10:59
MIDDAY_VALLEY = set(range(11, 15)) # 11:00 - 14:59
EVENING_PEAK = set(range(15, 21)) # 15:00 - 20:59
LATE_EVENING = set(range(21, 24)) # 21:00 - 23:59
# Helper to get prices for a set of hours
def get_prices_for_hours(hours_set):
return [p for p in today_prices if p["hour"] in hours_set]
def avg_price(price_list):
if not price_list:
return 0
return sum(p["price"] for p in price_list) / len(price_list)
# Get prices for each block
night_prices = get_prices_for_hours(NIGHT_HOURS)
morning_peak_prices = get_prices_for_hours(MORNING_PEAK)
midday_prices = get_prices_for_hours(MIDDAY_VALLEY)
evening_peak_prices = get_prices_for_hours(EVENING_PEAK)
late_evening_prices = get_prices_for_hours(LATE_EVENING)
# Calculate average prices per block
avg_night = avg_price(night_prices)
avg_morning_peak = avg_price(morning_peak_prices)
avg_midday = avg_price(midday_prices)
avg_evening_peak = avg_price(evening_peak_prices)
avg_late_evening = avg_price(late_evening_prices)
# Sort by price to find cheapest hours globally
sorted_by_price = sorted(today_prices, key=lambda x: x["price"])
# PRIMARY CHARGE: N cheapest hours (typically night)
primary_charge_data = sorted_by_price[:self._charge_hours_count]
charge_hours = set(p["hour"] for p in primary_charge_data)
avg_charge_price = avg_price(primary_charge_data)
# DISCHARGE THRESHOLD based on primary charge price
discharge_threshold = avg_charge_price * self._discharge_multiplier
# INTRA-DAY ARBITRAGE CHECK
# If mid-day valley price * efficiency < evening peak price, it's profitable
# to charge during mid-day and discharge in evening
midday_arbitrage_profitable = False
midday_charge_hours = set()
if midday_prices and evening_peak_prices:
# Find the 2-3 cheapest hours in mid-day valley
sorted_midday = sorted(midday_prices, key=lambda x: x["price"])
cheapest_midday = sorted_midday[:3] # Top 3 cheapest in valley
avg_cheapest_midday = avg_price(cheapest_midday)
# Check if charging mid-day is profitable for evening discharge
# breakeven = midday_price * 1.25 (accounting for 20% round-trip losses)
if avg_cheapest_midday * EFFICIENCY_FACTOR < avg_evening_peak:
midday_arbitrage_profitable = True
# Add mid-day valley hours where price * efficiency < evening peak avg
for p in midday_prices:
if p["price"] * EFFICIENCY_FACTOR < avg_evening_peak:
midday_charge_hours.add(p["hour"])
charge_hours.add(p["hour"])
# DETERMINE DISCHARGE HOURS
# Hours where price >= discharge_threshold AND not in charge_hours
discharge_hours = set(
p["hour"] for p in today_prices
if p["price"] >= discharge_threshold and p["hour"] not in charge_hours
)
# STANDBY HOURS = everything else
all_hours = set(range(24))
standby_hours = all_hours - charge_hours - discharge_hours
# Store arbitrage info in attributes
attrs["midday_arbitrage"] = {
"profitable": midday_arbitrage_profitable,
"midday_charge_hours": sorted(midday_charge_hours),
"avg_midday_price": round(avg_midday, 4) if midday_prices else None,
"avg_evening_peak": round(avg_evening_peak, 4) if evening_peak_prices else None,
"breakeven_price": round(avg_midday * EFFICIENCY_FACTOR, 4) if midday_prices else None,
}
# Get current price
current_price_data = next(
(p for p in today_prices if p["hour"] == current_hour),
None
)
current_price = current_price_data["price"] if current_price_data else None
# Update attributes
attrs.update({
"current_price": current_price,
"avg_charge_price": round(avg_charge_price, 4),
"discharge_threshold": round(discharge_threshold, 4),
"charge_hours": sorted(charge_hours),
"discharge_hours": sorted(discharge_hours),
"standby_hours": sorted(standby_hours),
"prices_horizon": "48h" if len(prices) > 24 else "24h",
})
# SoC-based logic (if SoC available)
emergency_charge = False
pre_peak_charge = False
critical_hour = None
if current_soc is not None:
# Simulate SoC forward to detect critical situations
soc_forecast = self._simulate_soc_forward(
current_hour, current_soc, charge_hours, discharge_hours
)
attrs["soc_forecast"] = soc_forecast[:12] # Next 12 hours
# Check for critical SoC drop
# We run this check regardless of current SoC to ensure safety.
for entry in soc_forecast:
if entry["soc"] < self._min_soc and entry["action"] != "charge":
critical_hour = entry["hour"]
# Check if there's a charge hour before critical
hours_until_critical = (critical_hour - current_hour) % 24
has_charge_before = any(
(current_hour + i) % 24 in charge_hours
for i in range(hours_until_critical)
)
# If no scheduled charge saves us, trigger emergency
if not has_charge_before:
emergency_charge = True
break
attrs["critical_hour"] = critical_hour
attrs["emergency_charge"] = emergency_charge
# --- FORWARD COVERAGE STRATEGY (Pre-Peak Charge) ---
# Look ahead 24h for "High Price" blocks where we WANT to discharge
# and ensure we have enough SoC to cover them.
# 1. Identify Target Discharge Hours in next 24h
# We look for prices > discharge_threshold
future_discharge_hours = []
# Filter prices for next 24h window
# We need to find the index of current hour in the prices list
# Since prices are sorted by time, we can just find the current hour entry
# Find index of current hour in the main 'prices' list
start_index = -1
for idx, p in enumerate(prices):
if p["date"] == today and p["hour"] == current_hour:
start_index = idx
break
if start_index != -1:
# Look at next 18 hours (typical planning horizon)
# CRITICAL FIX: Start looking from NEXT hour (start_index + 1).
# We want to find the *upcoming* peak. If we include the current hour,
# and the current hour is marginally high (1.23), it becomes the "peak start",
# making time_until_peak = 0, which disables Pre-Peak charging.
lookahead_window = prices[start_index + 1 : start_index + 19]
for p in lookahead_window:
if p["price"] >= discharge_threshold:
future_discharge_hours.append(p)
# 2. Calculate Required Capacity
# Required = (Hours * Discharge_Rate) + Min_SoC
# We group them into "blocks". If there is a block of 5 hours coming up,
# we need 5 * 10% + 20% = 70% SoC at the start of that block.
if future_discharge_hours:
# Find the start of the first major block
first_discharge_hour = future_discharge_hours[0]
# Count hours in that block (contiguous or close)
# For simplicity, we just count total high hours in next 12h
high_hours_count = len([p for p in future_discharge_hours if (p["datetime"] - first_discharge_hour["datetime"]).total_seconds() < 12*3600])
required_soc = (high_hours_count * self._discharge_rate) + self._min_soc
# 3. Gap Analysis
# Hysteresis Logic:
# If we are already charging due to coverage, we want to KEEP charging
# until we have a buffer (e.g., +5%) to prevent flip-flopping.
threshold_soc = required_soc + 2.0
# CRITICAL FIX: Only plan coverage charging if current price is LOW.
# If we are already in the high-price zone (current_price >= threshold),
# we should just discharge what we have and then stop. We should NOT panic-charge
# expensive energy just to discharge it again.
# REFINEMENT: "Low" is relative. 1.23 is high compared to night (0.80),
# but LOW compared to the upcoming peak (1.60).
# We should charge if current price is notably cheaper than the peak we are protecting against.
# Find min price in the upcoming discharge block
min_future_peak_price = min(p["price"] for p in future_discharge_hours) if future_discharge_hours else 0
# Allow charging if:
# 1. Price is generally cheap (< threshold)
# OR
# 2. Price is cheaper than the future peak (arbitrage opportunity to avoid running dry)
# We apply a safety margin (e.g., current must be < 95% of future peak min)
is_cheap_enough = False
if current_price is not None:
if current_price < discharge_threshold:
is_cheap_enough = True
elif current_price < (min_future_peak_price * 0.95):
is_cheap_enough = True
if current_soc < threshold_soc and is_cheap_enough:
# We have a deficit AND it is cheap enough to charge!
# Check if we are currently in the "Pre-Peak" window (before the high price starts)
time_until_peak = (first_discharge_hour["datetime"] - now).total_seconds() / 3600
if 0 < time_until_peak < 6: # If peak is approaching (within 6 hours)
# We need to charge NOW if this is a relatively cheap hour compared to the peak
# or if it's the only chance left.
# Find all hours between now and peak
available_hours = prices[start_index : start_index + int(time_until_peak) + 1]
# Sort them by price
available_hours_sorted = sorted(available_hours, key=lambda x: x["price"])
# How many hours do we need to charge to fill the gap?
# Gap = 30%. Charge rate = 30%/h. -> Need 1 hour.
soc_deficit = threshold_soc - current_soc
hours_needed = max(1, math.ceil(soc_deficit / self._charge_rate))
# Pick the cheapest N hours
cheapest_pre_peak = available_hours_sorted[:hours_needed]
# Is NOW one of them?
if any(p["hour"] == current_hour and p["date"] == today for p in cheapest_pre_peak):
pre_peak_charge = True
attrs["pre_peak_charge"] = True
attrs["reason"] = f"Forward Coverage: Charging for upcoming {high_hours_count}h peak (Target {threshold_soc:.0f}%)"
# Add to charge set for visualization consistency
charge_hours.add(current_hour)
# Final decision
# First check: if battery is full (100%), don't charge - switch to standby
if current_soc is not None and current_soc >= 99.5: # Hysteresis for top-off
if current_hour in discharge_hours:
state = self.STATE_DISCHARGE
reason = f"Battery full, discharging (price {current_price:.2f} >= threshold {discharge_threshold:.2f})"
else:
state = self.STATE_STANDBY
reason = "Battery full (100%), waiting for discharge opportunity"
elif emergency_charge:
state = self.STATE_CHARGE
reason = f"EMERGENCY: SoC will drop below {self._min_soc}% at {critical_hour}:00"
elif pre_peak_charge:
state = self.STATE_CHARGE
# Reason already set above
elif current_hour in charge_hours:
state = self.STATE_CHARGE
# Check if this is a midday arbitrage hour or primary cheap hour
if current_hour in midday_charge_hours:
reason = f"Mid-day arbitrage charge (price {current_price:.2f} profitable vs evening peak {avg_evening_peak:.2f})"
elif not pre_peak_charge: # Avoid overwriting coverage reason
reason = f"Cheapest hour (price {current_price:.2f} PLN/kWh in top {self._charge_hours_count} lowest)"
elif current_hour in discharge_hours:
if current_soc is not None and current_soc <= self._min_soc:
state = self.STATE_STANDBY
reason = f"Would discharge but SoC ({current_soc:.0f}%) at minimum"
else:
state = self.STATE_DISCHARGE
reason = f"Price {current_price:.2f} >= threshold {discharge_threshold:.2f}"
else:
state = self.STATE_STANDBY
reason = "Price between thresholds"
attrs["reason"] = reason
# Find next state change
next_change = self._find_next_state_change(
current_hour, state, charge_hours, discharge_hours
)
if next_change:
attrs["next_state_change"] = f"{next_change['hour']:02d}:00"
attrs["next_state"] = next_change["state"]
return state, attrs
def _simulate_soc_forward(
self,
from_hour: int,
start_soc: float,
charge_hours: set,
discharge_hours: set
) -> list[dict]:
"""Simulate SoC for next 24 hours."""
forecast = []
soc = start_soc
for i in range(24):
hour = (from_hour + i) % 24
if hour in charge_hours:
# Charging: use configured charge rate, cap at 100
soc = min(100, soc + self._charge_rate)
action = "charge"
elif hour in discharge_hours:
# Discharging: use configured discharge rate, floor at 0
soc = max(0, soc - self._discharge_rate)
action = "discharge"
else:
# Standby: minimal drain (base consumption ~2%/h)
soc = max(0, soc - 2)
action = "standby"
forecast.append({
"hour": hour,
"soc": round(soc, 1),
"action": action
})
return forecast
def _find_next_state_change(
self,
current_hour: int,
current_state: str,
charge_hours: set,
discharge_hours: set
) -> dict | None:
"""Find when the next state change will occur."""
for i in range(1, 25):
hour = (current_hour + i) % 24
if hour in charge_hours:
next_state = self.STATE_CHARGE
elif hour in discharge_hours:
next_state = self.STATE_DISCHARGE
else:
next_state = self.STATE_STANDBY
if next_state != current_state:
return {"hour": hour, "state": next_state}
return None
@property
def native_value(self) -> str:
"""Return the current recommendation state."""
state, _ = self._calculate_recommendation()
return state
@property
def extra_state_attributes(self) -> dict:
"""Return extra state attributes."""
_, attrs = self._calculate_recommendation()
return attrs
@property
def available(self) -> bool:
"""Return if entity is available."""
return self.coordinator.last_update_success and self.coordinator.data is not None

View File

@ -49,7 +49,7 @@ async def async_setup_services(hass: HomeAssistant) -> None:
# Get translations for logs
try:
translations = await async_get_translations(
hass, hass.config.language, DOMAIN, ["mqtt"]
hass, hass.config.language, DOMAIN
)
except Exception as e:
_LOGGER.warning("Failed to load translations for services: %s", e)

View File

@ -76,7 +76,15 @@
"mqtt_topic_sell": "MQTT Topic for Sell Prices",
"mqtt_48h_mode": "Enable 48h mode for MQTT",
"retry_attempts": "API retry attempts",
"retry_delay": "API retry delay (seconds)"
"retry_delay": "API retry delay (seconds)",
"battery_enabled": "Enable Battery Recommendation",
"battery_soc_entity": "Battery SoC Sensor",
"battery_capacity": "Battery Capacity (kWh)",
"battery_charge_rate": "Charge Rate (%/h)",
"battery_discharge_rate": "Discharge Rate (%/h)",
"battery_min_soc": "Minimum SoC (%)",
"battery_charge_hours": "Number of Charge Hours",
"battery_discharge_multiplier": "Discharge Price Multiplier"
},
"data_description": {
"buy_top": "How many cheapest buy prices to highlight (1-24 hours)",
@ -88,7 +96,15 @@
"mqtt_topic_sell": "MQTT topic where sell prices will be published",
"mqtt_48h_mode": "Publish 48 hours of prices (today + tomorrow) instead of just today",
"retry_attempts": "How many times to retry API requests on failure",
"retry_delay": "Wait time between API retry attempts"
"retry_delay": "Wait time between API retry attempts",
"battery_enabled": "Enable smart battery charging recommendation sensor",
"battery_soc_entity": "Entity that provides current battery State of Charge (%)",
"battery_capacity": "Total battery capacity in kWh",
"battery_charge_rate": "How fast the battery charges (% per hour)",
"battery_discharge_rate": "How fast the battery discharges (% per hour)",
"battery_min_soc": "Never discharge below this level (%)",
"battery_charge_hours": "How many cheapest hours to use for charging (3-12)",
"battery_discharge_multiplier": "Discharge when price >= avg_charge_price * this value"
}
},
"price_settings": {

View File

@ -65,7 +65,47 @@
"step": {
"init": {
"title": "Opcje Pstryk Energy",
"description": "Zmodyfikuj konfigurację Pstryk Energy"
"description": "Zmodyfikuj konfigurację Pstryk Energy",
"data": {
"buy_top": "Liczba najlepszych cen zakupu",
"sell_top": "Liczba najlepszych cen sprzedaży",
"buy_worst": "Liczba najgorszych cen zakupu",
"sell_worst": "Liczba najgorszych cen sprzedaży",
"mqtt_enabled": "Włącz mostek MQTT",
"mqtt_topic_buy": "Temat MQTT dla cen zakupu",
"mqtt_topic_sell": "Temat MQTT dla cen sprzedaży",
"mqtt_48h_mode": "Włącz tryb 48h dla MQTT",
"retry_attempts": "Liczba prób API",
"retry_delay": "Opóźnienie między próbami (sekundy)",
"battery_enabled": "Włącz rekomendacje baterii",
"battery_soc_entity": "Sensor SoC baterii",
"battery_capacity": "Pojemność baterii (kWh)",
"battery_charge_rate": "Tempo ładowania (%/h)",
"battery_discharge_rate": "Tempo rozładowania (%/h)",
"battery_min_soc": "Minimalny SoC (%)",
"battery_charge_hours": "Liczba godzin ładowania",
"battery_discharge_multiplier": "Mnożnik progu rozładowania"
},
"data_description": {
"buy_top": "Ile najtańszych cen zakupu wyróżnić (1-24 godzin)",
"sell_top": "Ile najwyższych cen sprzedaży wyróżnić (1-24 godzin)",
"buy_worst": "Ile najdroższych cen zakupu wyróżnić (1-24 godzin)",
"sell_worst": "Ile najniższych cen sprzedaży wyróżnić (1-24 godzin)",
"mqtt_enabled": "Publikuj ceny do MQTT dla systemów zewnętrznych jak EVCC",
"mqtt_topic_buy": "Temat MQTT gdzie będą publikowane ceny zakupu",
"mqtt_topic_sell": "Temat MQTT gdzie będą publikowane ceny sprzedaży",
"mqtt_48h_mode": "Publikuj 48 godzin cen (dziś + jutro) zamiast tylko dzisiaj",
"retry_attempts": "Ile razy ponawiać żądania API w przypadku błędu",
"retry_delay": "Czas oczekiwania między próbami połączenia z API",
"battery_enabled": "Włącz inteligentny sensor rekomendacji ładowania baterii",
"battery_soc_entity": "Encja dostarczająca aktualny stan naładowania baterii (%)",
"battery_capacity": "Całkowita pojemność baterii w kWh",
"battery_charge_rate": "Jak szybko ładuje się bateria (% na godzinę)",
"battery_discharge_rate": "Jak szybko rozładowuje się bateria (% na godzinę)",
"battery_min_soc": "Nigdy nie rozładowuj poniżej tego poziomu (%)",
"battery_charge_hours": "Ile najtańszych godzin wykorzystać do ładowania (3-12)",
"battery_discharge_multiplier": "Rozładowuj gdy cena >= średnia_ładowania × ta wartość"
}
},
"price_settings": {
"title": "Ustawienia Monitorowania Cen",

View File

@ -171,7 +171,7 @@ class PstrykDataUpdateCoordinator(DataUpdateCoordinator):
# Load translations
try:
self._translations = await async_get_translations(
self.hass, self.hass.config.language, DOMAIN, ["debug"]
self.hass, self.hass.config.language, DOMAIN
)
except Exception as ex:
_LOGGER.warning("Failed to load translations for coordinator: %s", ex)